

Elastic and inelastic X-ray scattering from isochorically heated carbon

Dominik Kraus

Dominik Kraus | Institute of Radiation Physics | www.hzdr.de

Experiment 2180 at European XFEL (HED instrument)

Warm Dense Matter

Solid

Plasma

High energy density matter

*R. Neutze et al., Nature (2000)

High energy density matter

*R. Neutze et al., Nature (2000)

Warm Dense Matter

transition regime solid state <>>>> hot dense plasma

properties:

- 0.1 10 times solid state density
- temperature: \sim 5000 K up to \sim 10⁶ K
- pressure: ~1 GPa up to ~10 TPa
- partially ionized
- partially degenerate $n_e \lambda_{th}^3 \approx 1$
- strongly coupled ions

•
$$k_BT \sim \frac{e^2}{4\pi\varepsilon_0} \frac{1}{\langle d \rangle} \sim E_F \sim E_{bond} \sim eV$$

Planets / Brown Dwarfs / Stars

Impacts

Technology applications

Warm Dense Matter

• $k_BT \sim \frac{e^2}{4\pi\varepsilon_0} \frac{1}{\langle d \rangle} \sim E_F \sim E_{bond} \sim eV$

Using X-ray scattering to study partially ionized plasmas

Elastic scattering:

Bound-free scattering:

Free-free scattering:

Scattered Power:

$$\frac{dP}{d\Omega d\omega} = r_0^2 \frac{1}{2} \left(1 + \cos^2 \theta\right) \left(\frac{\omega_s}{\omega_i}\right)^2 N I_0 S(k,\omega)$$

Structure factor:

$$S(k,\omega) = |f(k) + q(k)|^2 S_{ii}(k,\omega) + Z_f S_{ee}(k,\omega)$$

+ $Z_b \int S_{be}(k,\omega-\omega') S_s(k,\omega') d\omega'$

Member of the Helmholtz Association Dominik Kraus | Institute of Radiation Physics | www.hzdr.de

X-ray scattering at high energy laser systems (examples)

How can XFELs help

-> isochoric heating and precise scattering measurements

D. Kraus et al., PPCF 61, 014015 (2019)

High-quality spectra from graphite obtained at LCLS

Opportunities with high-quality spectra

D. Kraus et al., PPCF 61, 014015 (2019)

Opportunities with high-quality spectra

D. Kraus et al., PPCF 61, 014015 (2019)

Isochoric heating effects on scattering spectra at LCLS

D. Kraus et al., PPCF 61, 014015 (2019)

Electronic structure of dense plasmas

Dominik Kraus | Institute of Radiation Physics | www.hzdr.de

Electronic structure of dense plasmas

Electronic structure of dense plasmas

Effects of free electrons in dense plasma

free electrons in dense plasma for given T, ρ

e.g. Stellar interiors Radiative transport vs. convection

Numerous experiments and calculations in recent years

Problem in experiments: Determine T, ρ , Z + IPD at the same time

-> presented X-ray scattering method is very promising!

Experiment at HED instrument of European XFEL

X-ray scattering spectra from diamond at the HED instrument 155°

X-ray focus

Graphitization imprints

LiF imprints -> halo around central spot

Total pulse energy: ~ 2 mJ

Central spot: ~ 1.5 μ m diameter, ~ 2.5 eV/atom absorbed dose, ~ 5% of total pulse energy Halo: ~ 20 μ m diameter, ~ 0.5 eV/atom absorbed dose

Ultrafast disintegration / graphitization of diamond

N. Medvedev et al., 4open (2018) https://doi.org/10.1051/fopen/2018003 N. Medvedev et al., Sci. Rep 8, 5284 (2018)

Graphitization threshold ~0.7 eV/atom

-> ~1.5% of valence electrons excited to conduction band (condensed matter picture)

-> ionization of ~0.06 (plasma physics picture)

Heating effect in diamond

Exclusion plot plasma conditions in isochoric heating experiment (diamond sample)

Using the 4-bounce monochromator: X-ray Raman Spectroscopy

Seeding:

- comparable bandwidth as with monochromator similar heating intensity as with SASE
- Also interesting as in situ probe for upcoming rep-rated drive lasers at HED instrument

Comparable to XANES method, most useful for bulk low-Z materials

Collective oscillations by crossing into available states in the conduction band -> "Plasmons"

Summary

and sensitivity!

• Demonstrated high-quality X-ray scattering setup at HED to characterize plasma dynamics in Warm Dense Matter

- Saw effects of heating: ultrafast disintegration of diamond lattice, but not the expected significant ionization and electron temperature -> most probably due to focusing problems
- Demonstrated that X-ray Raman Spectroscopy is a highly promising HED diagnostics, in particular towards rep-rated drive lasers

Member of the Helmholtz Association Dominik Kraus | Institute of Radiation Physics | www.hzdr.de

Thanks!