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Scientific breakthroughs rely on abundant compute.
Data Reduction helps mitigate challenges in data acquisition, storage, management, 
and analysis.
Data reduction that also extracts features on the fly can produce  actionable 
information which can be used to build smart(er) experiments.

Overview

● Review LCLS-II Data System Challenges and Drivers
● LCLS Data Reduction Pipeline  
● Opportunities in Data Science

○ AI/ML at the Edge
○ Edge to HPC workflows
○ Experiment Steering
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LCLS-II Challenges



1 TB/s

LCLS-II Data Challenges
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● LCLS-II Upgrade: greater data velocity, volume, and complexity
Data Rates: 120 Hz to 1 MHz (10000x)
Raw Data Volumes: 2 GB/s to 200 GB/s (100x)
Recorded Data Volumes: 2 GB/s to 20 GB/s (10x)
Computational Requirements: 80% ~1 PF, 20% ~1 ExaFLOP

● Fast Feedback: real-time analysis (sec/min) is essential to the 
users’ ability to make informed decisions during experiments.  

● Variability: 
○ Wide variety of experiments with turnaround ~days
○ Large dynamic range: device readout 0.01 Hz - 1 MHz 
○ Data Complexity: Variable length data (raw, compressed) 
○ Access patterns to data vary by experiment and detector
○ Analysis is a mix of tried-and-true & innovative techniques

● Time to Science:  Development cycle must be fast & flexible
● No user left behind: alleviate the pressure on users to gather 

resources to mount a significant computing effort.

Surge to offsite – NERSC, LCF

LCLS Data Throughput
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analysis during experiments
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TMO high speed digitizers and ePix imaging detectors represent big data producers

LCLS-II Data Reduction Pipeline challenges

TMO DREAM Reaction Microscope Technique (Coulomb Explosion 
Imaging, Electron/Ion Correlations) 
○ Data volume is primarily  high speed digitizer (HSD) data, 20 

HSD channels with ~10 hits/channel
○ FPGA data reduction:  save only peaks and area around each 

peak (deadband); write zero-suppressed data
■ Tunable peak detection threshold, deadband region
■ Data reduced by factor > 50x

ePixHR imaging detector:  10x reduction required

○ ePixHR in MFX (~2028):  16 MP @ 35 kHz = 1120 GB/s
○ ePixHR @ 5 kHz expected in TXI in late 2024
○ Current LCLS 1 software performance

■ 5 Hz/core for corrections for a 2 MP ePix10K 
■ Implies 56K cores for 16 MP 25 kHz detector 

○ Note:  trigger decision has been run at 1 MHz

Characteristic signal in TMO 
from high speed digitizer 
channel



LCLS facility provides access to computing for massive-scale data analytics in a multi-tiered 
computing landscape that includes edge, local SLAC, and ASCR facilities. 
Users provide the last mile: develop their own analysis on top of this stack.

LCLS Data System enables & accelerates scientific discovery
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Workflows map algorithms onto the layers of the analysis 
pipeline (DRP, FFB, Offline) for each experiment technique

Undulator Instrument Endstation Experiment
Technique Detector Data Reduction 

Type FFB Algorithm Type Offline Algorithm Type

SXU NEH 1.1 DREAM COLTRIMS Digitizer Zero suppression ROENTDEK Coincidence 
Sorting

detailed reconstruction of 
ToF, x, y

SXU NEH 1.1 DREAM Time of Flight Digitizer Zero suppression peak finding statistics

SXU NEH 1.1 LAMP Time of Flight Digitizer Zero suppression peak finding statistics

SXU NEH 1.1 LAMP Imaging SXR Imag. + 
Digi. Veto Fourier Transform MTIP

SXU NEH 2.2 LJE XAS / XES TES Zero suppression Binning na

SXU NEH 2.2 LJE XAS / XES RIXS-ccd N.A. Binning na

SXU NEH 2.2 RIXS IXS / RIXS RIXS-ccd N.A. Binning na

SXU NEH 2.2 RIXS XRD / RXRD SXR Imaging ROI

SXU NEH 2.2 RIXS XPCS SXR Imaging Compression Photonize Stats Analysis

SXU NEH 1.2 --- X-ray/X-ray SXR Imaging ROI FXS Correlations (subset) FXS Correlations + MTIP

SXU NEH 1.2 --- Imaging epix100-HR + 
Digi. Veto Fourier Transform MTIP

SXU NEH 1.2 --- XAS / XES RIXS-ccd N.A. Peak Finding statistics

Undulator Instrument Technique Detector Data Reduction Type FFB Algorithm Type Offline Algorithm Type
HXU NEH 1.2 X-ray/X-ray SXR Imaging ROI Peak Finding Indexing

HXU NEH 1.2 Imaging epix100-HR + Digi. Veto Fourier Transform MTIP

HXU NEH 1.2 XAS / XES RIXS-ccd N.A.

HXU NEH 1.2 Imaging ePixUHR Veto Fourier Transform MTIP
HXU XPP Scattering CSPAD N.A. Cube / Angular integration Visualization
HXU XPP XAS / XES ePix100 N.A. Photonize Stats Analysis
HXU XPP IXS / RIXS ePix100 N.A. Photonize Stats Analysis
HXU XPP XRD / RXRD ePix100 N.A. Photonize Stats Analysis
HXU XPP Scattering ePix10k-HR Binning Cube / Angular integration Visualization
HXU XPP Scattering ePixUHR Binning Cube / Angular integration Visualization
HXU XCS/IXS XPCS ePix100 N.A. Photonize Stats Analysis
HXU XCS/IXS IXS / RIXS ePix100 N.A. Photonize Stats Analysis
HXU XCS/IXS XRD / RXRD ePix100 N.A. Photonize Stats Analysis
HXU XCS/IXS XPCS epix100-HR Compression Photonize Stats Analysis
HXU XCS/IXS XPCS ePixUHR Compression Photonize Stats Analysis
HXU MFX Xtallography Jungfrau N.A. Peak Finding Indexing
HXU MFX Xtallography Jungfrau Veto Peak Finding Indexing
HXU CXI Xtallography Jungfrau N.A. Peak Finding Indexing
HXU CXI Imaging Jungfrau N.A. Fourier Transform MTIP
HXU CXI Xtallography ePixUHR Veto Peak Finding Indexing
HXU CXI Imaging ePixUHR Veto Fourier Transform MTIP
HXU MEC ePix100 N.A. TIFF Animated GIF



Data Reduction Pipeline (DRP)

8

All current experiments reduce data when processing data offline → now do it in real time
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On-the-fly data reduction
● mitigates network, storage, computing 

bottlenecks
● enables streaming to HPCUsers select from  toolbox of data reduction 

algorithms
● Parameterized data reduction algorithms run on 

the DRP compute layer
● Algorithms:  Compression, feature extraction, 

trigger/veto, multi-event reduction
● Validation:  save a programmable fraction of 

unreduced data
Software Trigger Nodes perform online event 
build collecting data from multiple detectors 
from the same event.

Two decisions per event, per shot:
● Store or not?
● Send data to online monitoring?
Streaming feature extraction can provide actionable information for experiment 
control!



Expected data reductions for XPP, DXS, MFX, CXI

Algorithms XPP DXS MFX CXI

Veto X X X

SZ Compression X X X X

“Cube”: Average image binning X X X

Pixel binning X X X

ROI/Projection X

Angular integration (and Pie-Slicing) X X

“Parallelizable MPEG-style” X X

Peak-finding/Thresholding X X



Future real-time data reduction in FPGA and/or 
CPU/GPU

Data Reduction Pipeline



1 MHz capable DAQ with real-time data reduction 
DAQ and Data Reduction Pipeline tested at 
120 Hz in TMO.

Testing acquisition at 1 MHz without beam 
using data from 14 high-speed digitizer 
channels and other instruments such as 
wave8, Piranha camera. 

Status of data reduction:
● Deploy data reduction algorithms 

appropriate to an instrument as the 
instruments come online.

● TMO high-speed digitizers capable of 
producing 200 GB/s of data.

● Tested data reduction for waveforms 
in FPGA

● High-speed cameras not yet deployed.



TMO and RIX use data reduction for High Speed Digitizer Data

How does the DRP work in practice?

● Since 2020, we have been practicing data reduction at 120 Hz rates with the 
LCLS-II data system in TMO and chemRIXS, recording raw and reduced data 
to evaluate performance of Data Reduction Pipeline.

● At high rate (> 120 Hz), turn on data reduction, set prescale to 100 Hz 
(unreduced data), gather unreduced data alongside reduced data 
○ Can afford to be conservative with DRP parameters in the beginning.  
○ Validate data reduction using prescaled data during first day of 

experiment
○ Goal is to build trust and confidence between facility and users
○ End goal is good science not good data reduction



AMI2 online monitoring framework attaches analyzes a subset of the most recent DRP data

Real-time Feedback to validate data reduction performance 

Graphical user interface for developing new analysis on the fly without writing code
View a selectable fraction of events that meet user-specified criteria.

Note:  
● AMI2 has a GUI

and scripted 
interface 

● Uses psana2 
under the hood

● psana2 python 
scripts can be 
adapted to run in 
AMI2



SAXS/WAXS is challenging:  every shot contains information; hard to distinguish signal

Lossy compression with fixed error bounds - SZ Compression

● Demonstrated SZ3 lossy compression with fixed error bounds on single 
panel emulated ePixHR @ 8 kHz with full calibration in DAQ test stand
○ Data reduced by factor (9x, err= 100), (17x, err=200)
○ No perceptible effect on the science result

● R&D milestones supporting this demonstration:
○ Re-factor calibration software to split segments across many nodes 

driven by serial number (Mikhail Dubrovin)
○ SZ compression performance improvements (Franck Cappello at 

Argonne) and segmentation (Stefano Marchesini)
○ Code refactored for highly-parallelized readout 
○ Assumptions renormalized:  algorithms do not always operate on fully 

reconstructed, fully calibrated images
● Cons:  Does not produce actionable information; need to decompress prior 

to analysis in offline (there is a computational “penalty”)
● SZ compression has been previously demonstrated on crystallography

Credit:  Stefano Marchesini

Reduced by 17x, err=200



Produce actionable information with low latency for 
fast feedback and experiment steering

Data Reduction at the Edge



MRCO reconstructs attosecond pulses using ML at the Edge

AI/ML at the Edge:  Data Reduction for TMO MRCO

● Deploy AI inference in FPGAs:  developed 
an AI inference library in High-Level 
Synthesis which enables high rate data 
processing & low latency feedback

● Implemented CookieNet feature extraction 
to reconstruct time-energy distribution of 
an attosecond FEL pulse in real-time  to 
reduce 100 GB/s →~1 GB/s

● Demonstrated in Data Reduction Pipeline 
FPGA (KCU1500)

● Demonstrated training and inference on 
Graphcore and SambaNova

This material is based upon work supported by the U.S. Department of Energy, Office of Science, 
Office of Basic Energy Sciences under Award Number FWP-100643 and  FWP-35896.  

Gain insight into attosecond electron dynamics:

● MRCO/Cookiebox:  Angle-resolved Electron Spectroscopy determines 
photoelectron angular distributions during photochemical processes

MRCO/Cookiebox



Detectors with sparsified readout at ASIC enable leap from 100 kHz detector rates  to 1 MHz

Smart Sensors:  SparkPix-S and SparkPix-RT

SparkPix-S:  Pixel-threshold
● Information in both XPCS and XSVS 

experiments is “sparse” and confined in a limited 
# of pixels/frame, each pixel containing a limited 
# of photons 

● 2D detector with fine spatial resolution, 
operating at the full rate of the machine, and 
discriminating between 0, 1, 2, 3…. 
photons/pixel/frame with high QE

SparkPix-RT
● Solve data transmission bottleneck by implementing 

compression algorithm solutions in ASIC
● bit-level compression
● auto-correction techniques (pedestal)

● R&D needed to  deal with calibration and segmentation

1 ph

2 ph

3 ph
4 ph

5 ph



1st generation DRP: Veto for Crystallography and Single Particle Imaging 

LCLS Beam

● Individual nanocrystals are injected 
into the focused LCLS pulses

● Diffraction patterns are collected 
on a pulse-by-pulse basis

● One exposure per crystal
● Each image processed 

independently
● Crystal concentration dictates “hit” 

rate

Experiment Description
X-ray 

diffraction
image

Interpretation of 
system structure / 

dynamics

Data Reduction
• Remove”no hits”
• >10x reduction

3 TFlops
16 TFlops

1 TB/s 100 GB/s

Intensity map 
from multiple 

pulses

60 GB/s 6 GB/s

● 4 MP@5 kHz
in 2024

● 16 MP@40kHz 
in 2028

Data Analysis
• Bragg peak finding
• Index / orient patterns 
• Average
• 3D intensity map
• Reconstruction

4 PFlops
20 PFlops

Liquid jet

Detector

Megapixel 
Detector

Next generation DRP:  write peaks

PeakNet
autocorrection,

calibration
Indexing, averaging, 3D intensity 

map, reconstruction



PeakNet: A 1 MHz AI-based Autonomous Bragg Peak Finder 
Significance and Impact

● Once proven, use PeakNet in Data Reduction Pipeline 
to write peaks instead of raw images to disk.

● SFX produces vast amounts of data, posing 
computational challenges. 

● PeakNet is a deep neural network for
○ Autonomous Bragg peak detection in real-

time
○ Adapts in real-time to shot-to-shot 

background changes without manual tuning
Features

● Autonomous pixel segmentation into 1) Bragg 
peaks, 2) artifact scattering, and 3) background, 
requiring no user parameter tuning.

● Currently transitioning to a new modular model 
architecture for 

○ faster training/retraining
○ easier deployment to new use cases
○ enabling easier migration to FPGA

Wang, C. et al., 2023 (https://doi.org/10.48550/arXiv.2303.15301)
This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences under Award Number FWP-
100643.

Credit: Cong Wang

Deployed in stealth mode in CXI+MFX, running alongside a 
traditional peak finding-algorithm to compare performance



Quasi-Real Time Workflows using High Performance Compute
Figures:  Greg Stewart at SLAC

Analyze data at the rate of 
production by providing seamless 
access to network, compute, and 
storage.

Stream data to remote HPC for 
prompt analysis

5 sec

7 sec

19  sec

More good information, faster → better decisions → better data → experiment success!

AI/ML at the Edge must be 
capable of fast  adaptation to 
changing conditions



Advances in computational power and analysis methods that leverage massive 
data quantities will maximize the science output from LCLS
but need to implement data reduction to mitigate bottlenecks in network, storage, and 
compute!

Summary

LCLS is supporting the development of a data system infrastructure capable of handling the 
demands of Big Data:

● Real-time data analysis capabilities (data reduction,  complex workflow orchestration)
● On-demand utilization of super-computing environments
● Strategic development of  AI/ML for targeted applications
● Ability to automate experiments (execution to analysis)
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Backup



Earlier data reduction is usually a win:  less data volume to transfer, store, and process.

Data compression at different stages of analysis pipeline

● Earlier data reduction (online):
○ Pros: reduces volume, network bandwidth allowing transfer of data (out of 

detector or across ESnet), reduces storage cost, may reduce downstream 
computing needs (if reduction method is equivalent to a pre-processing step)

○ Cons: introduce latency in the pipeline and some risk that information  is lost 
if lossy compression method is used.   If you do something wrong, you may 
not be able to reprocess to get it right.

● Later data reduction (offline):
○ Non-starter for LCLS-II-HE:  network transmission costs, storage costs, ability 

to write to disk, cost to analyze data are all astronomical
○ Pro: You can repeat your analysis if, for example, your calibration is wrong



Data compression can be implemented at different stages of the pipeline.

The Future of Data Reduction  at LCLS-II / LCLS-II-HE

● First generation DRP implementation is deliberately minimal, transparent and non-ML to build 
trust while still achieving the minimum necessary data reduction.  
○ Implemented in a single place in Data Reduction Pipeline 
○ Key tools:  prescale (raw+compressed data at 100 Hz), online monitoring,  and fast 

feedback for validation, buildup of workflows; learn where the pain points are.
● Next generation DRP implementation:  more ambitious feature extraction algorithms 

○ Provide actionable, real-time information to drive experiment steering (baby steps)
○ Move data compression and algorithms closer to the detector

■ bit-level compression (SparkPix-RT)
■ auto-correction techniques (pedestal correction, gain on SparkPix-RT)
■ begin incorporating ML for well-characterized diagnostics that are used 

throughout the facility and generate large raw data volumes (ATM, MRCO)
○ Recognize pain points and develop solutions or rapid adaptations:

■ detector characterization, calibration, good/bad/twinkling pixels, beam spot 
finding

■ work with users to understand the reasons  for reprocessing data



ILLUMINE - Intelligent Learning for Light Source and Neutron Source User Measurements 
Including Navigation and Experiment Steering

ILLUMINE - $10M over 5 years for Experiment Steering

LAB 23-3030: Advanced Scientific Computing Research for DOE User Facilities

Authors: Jana Thayer (PI), Ryan Herbst, Vivek Thampy, Chun Hong Yoon (SLAC) Stuart Campbell, Daniel Allan, Andi 
Barbour, Thomas Caswell, Natalie Isenberg, Phillip Maffettone, Daniel Olds, Max Rakitin, Nathan Urban (BNL) 
Nicholas Schwarz, Franck Cappello, Ian Foster, Antonino Miceli (ANL) Alexander Hexemer, Dylan McReynolds (LBNL)
Jonathon Taylor (ORNL)

Abstract: 
This research proposes the development of a multi-facility framework to  address the challenges posed by the 
growing volume and complexity of data collected at x-ray and neutron sources. 
By integrating advanced computing, algorithms, and analysis, the framework aims to enable rapid data analysis and 
autonomous experiment steering. 
It will leverage real-time compression, machine learning inference, and decision support techniques to optimize data 
collection and explore experiment phase space. 
The framework, built upon the Bluesky data collection platform, will provide accessible and reusable components to 
enhance the efficiency and quality of experiments, unlocking new scientific possibilities.



A modular framework to close the loop between fast analysis, machine-assisted decision-making, 
and data acquisition to drive experiments on the timescales of seconds, minutes, or hours

ILLUMINE - SLAC-led 5 light source + neutron source  $10M, 
5Y  effort for Experiment Steering Infrastructure



LCLS Automated Data Movement and Run Processing (ARP)

User defines:
❏Script/

workflow
❏Run #s
❏HPC choice*

*agreed upon and 
reserved in advance 

Data In → Science  Out;  use ARP to orchestrate user analysis workflow on local or remote HPC



ExaFEL project streams data to NERSC for analysis results within minutes 

Quasi-real-time analysis using NERSC

2
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Transparent data movementFile 
management

Automated 
Run 

Processing

Monitor 
Results

https://doi.org/10.48550/arXiv.2206.11992

Testing data 
transfer to 
other facilities

https://doi.org/10.48550/arXiv.2206.11992


Provide actionable information using on-the-fly inference at the edge using ML trained 
remotely on streamed data - rapid (re)training workflows

Actionable Information from Sensor to Data Center (AISDC)

Develop feature extraction for TMO CookieBox, Serial Femtosecond Crystallography (SFX), Single Particle Imaging 
(SPI), and High Energy X-ray Diffraction Microscopy (HEDM)

2022 LDAC - Data Systems This material is based upon work supported by the U.S. Department of Energy, Office of Science, 
Office of Basic Energy Sciences under Award Number FWP-100643 and  FWP-35896.  

Model training on local 
GPU: 1102 seconds

7 seconds

7 + 19 + 5 = 31 
s

19 
sec

5 seconds


