

Science at the SXP instrument

Manuel Izquierdo Head SXP group

Patrik Grychtol Laser specialist

David Doblas Data Analyst

Vahagn Vardanyan Mechanical Eng.

Ekaterina Tikhodeeva PhD

Joshua Ohnesorge Vacuum Eng. (1/3)

Maria Peter Adm. Assistant

The 7th instrument SXP (Soft X-ray Port)

GL: Manuel Izquierdo

Complete Time-resolved X-ray Photoelectron spectroscopyTR-XPESK. Rossnagel
(Jni-Kiel/DESY)G. Schönhense
(Jni. Mainz)DescriptionColspan="2">Laboratory for Astrophysics

Understanding Catalysis and biochemistry by studying Chemical Bond Activation

CBA

P. Wernet (Uni. Uppsala)

Laboratory for Astrophysics, atomic physics, fundamental research with highly charged ions

HCI

J. Crespo (MPI Heidelberg)

M. Meyer, T. Baumann (EuXFEL)

https://xfel.tind.io/record/2647?ln=en

4

Photoelectron spectroscopy

UV regime

Band structure

Fermi surface

ESCA

10µm

Soft X-rays standing wave photoemission

Momentum-resolved electronic structure at a buried interface from soft X-ray standing-wave angle-resolved photoemission

A. X. GRAY^{1,2,3}, J. MINÁR⁴, L. PLUCINSKI⁵, M. HUIJBEN⁶, A. BOSTWICK⁷, E. ROTENBERG⁷, S.-H. YANG⁸, J. BRAUN⁴, A. WINKELMANN⁹, G. CONTI^{1,2}, D. EITENEER^{1,2}, A. RATTANACHATA^{1,2}, A. A. GREER^{1,2}, J. CISTON¹⁰, C. OPHUS¹⁰, G. RIJNDERS⁶, D. H. A. BLANK⁶, D. DOENNIG¹¹, R. PENTCHEVA¹¹, J. B. KORTRIGHT², C. M. SCHNEIDER⁵, H. EBERT⁴ and C. S. FADLEY^{1,2}

ARTICLE

Received 24 Jul 2014 | Accepted 30 Sep 2014 | Published 17 Nov 2014

Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission

DOI: 10.1038/ncomms6441

Slavomír Nemšák^{1,2,†}, Andrey Shavorskiy³, Osman Karslioglu³, Ioannis Zegkinoglou³, Arunothai Rattanachata^{1,2}, Catherine S. Conlon^{1,2}, Armela Keqi^{1,2}, Peter K. Greene¹, Edward C. Burks¹, Farhad Salmassi², Eric M. Gullikson², See-Hun Yang⁴, Kai Liu¹, Hendrik Bluhm³ & Charles S. Fadley^{1,2}

Femtosecond time-resolved photoelectron spectroscopy

Source requirements for photoelectron spectroscopy on solids

- High fluence induce non-linear effects (space charge)
- Spot size is limited to $\sim Ø 30 \ \mu m$

Ideal source

- As many pulses as possible: MHz, CW
- Moderate flux: 10⁶ ph/s @ 1 MHz

Gerd Schönhense et al.

Available sources for femtosecond time-resolved photoelectron spectroscopy

At synchrotrons \rightarrow Time resolution limited to the ps

■ Warm LINAC FELs → Repetition rate limited to 100s of Hz

Current alternative -> SC-MHz FELs

Femtosecond time-resolved experiments at FELs above 100 eV

Observation of an Excitonic Mott Transition through Ultrafast Corecum-Conduction Photoemission Spectroscopy

Maciej Dendzik, R. Patrick Xian, Enrico Perfetto, Davide Sangalli, Dmytro Kutnyakhov, Shuo Dong, Samuel Beaulieu, Tommaso Pincelli, Federico Pressacco, Davide Curcio, Steinn Ymir Agustsson, Michael Heber, Jasper Hauer, Wilfried Wurth, Günter Brenner, Yves Acremann, Philip Hofmann, Martin Wolf, Andrea Marini, Gianluca Stefanucci, Laurenz Rettig, and Ralph Ernstorfer

Phys. Rev. Lett. 125, 096401 – Published 24 August 2020

Femtosecond time-resolved experiments at FELs above 100 eV

Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics

Federico Pressacco ⊠, Davide Sangalli, Vojtěch Uhlíř, Dmytro Kutnyakhov, Jon Ander Arregi, Steinn Ymir Agustsson, Günter Brenner, Harald Redlin, Michael Heber, Dmitry Vasilyev, Jure Demsar, Gerd Schönhense, Matteo Gatti, Andrea Marini, Wilfried Wurth & Fausto Sirotti

Nature Communications 12, Article number: 5088 (2021) Cite this article

t/min

30

25

20

8

4

0

Soft X-ray femtosecond time-resolved photoemission

Ultrafast Real-Time Dynamics of CO Oxidation over an Oxide Photocatalyst

Michael Wagstaffe, Lukas Wenthaus, Adrian Dominguez-Castro, Simon Chung, Guilherme Dalla Lana Semione, Steffen Palutke, Giuseppe Mercurio, Siarhei Dziarzhytski, Harald Redlin, Nicolai Klemke, Yudong Yang, Thomas Frauenheim, Adriel Dominguez, Franz Kärtner, Angel Rubio, Wilfried Wurth, Andreas Stierle, and Heshmat Noei*

Static photo-excitation

294

292

Binding Energy / eV

290

288

CO₂ CO

Time-resolved

Femtosecond time-resolved photoelectron diffraction

0.07

0.06

0.05

0.04

J

Femtosecond time-resolved photoelectron diffraction

SXP instrument

European XFEL

- Model and real implementation of the SXP instrument
- First experiments: TR-XPES (Time-resolved photoelectron spectroscopy on solids)

Experiment setup and laser capabilities

Pump Laser

800 nm, 1030 nm & harmonics outputsOPA @ 118 KHz

FEL commissioning

KB focus commissioned @ 1 & 2.5 keV, best horizontal focus 10 μm

FEL, Optical Laser & momentum microscope commissioning

 $2 \text{ x} 37 \ \mu m^2$

20.0µm

SXP first results: spatial mode

Au/Si chessboard sample

Graphene/Ir(111)

20

SXP first results: static angular mode

Graphene/Ir(111) Valence band

European XFEL

SXP first results: time-resolved experiments

- FEL @ 1 keV, 4.5 MHz, 400 μJ
- PPL @ 760 nm \rightarrow resonant frequency of the system, 4.5 MHz (first time)

Contact:

- <u>sxp@xfel.eu</u> or <u>manuel.izquierdo@xfel.eu</u>
- Webpage: <u>https://www.xfel.eu/facility/instruments/sxp/index_eng.html</u> or browse for SXP XFEL

Thank you for your attention!

Femtosecond time-resolved experiments at FELs below 100 eV

Ultrafast orbital tomography of a pentacene film using time-resolved momentum microscopy at a FEL

Kiana Baumgärtner, Marvin Reuner, Christian Metzger, Dmytro Kutnyakhov, Michael Heber, Federico Pressacco, Chul-Hee Min, Thiago R. F. Peixoto, Mario Reiser, Chan Kim, Wei Lu, Roman Shayduk, Manuel Izquierdo, Günter Brenner, Friedrich Roth, Achim Schöll, Serguei Molodtsov, Wilfried Wurth, Friedrich Reinert, Anders Madsen, Daria Popova-Gorelova & Markus Scholz

Nature Communications 13, Article number: 2741 (2022) Cite this article

Soft X-ray femtosecond time-resolved photoemission

Check for updates

ARTICLE

nature

COMMUNICATIONS

https://doi.org/10.1038/s41467-021-21454-3 OPEN

Direct observation of charge separation in an organic light harvesting system by femtosecond time-resolved XPS

Friedrich Roth⊚^{1⊠}, Mario Borgwardt², Lukas Wenthaus^{3,4}, Johannes Mahl², Steffen Palutke⁴, Günter Brenner⁴, Giuseppe Mercurio⊙⁵, Serguei Molodtsov^{1,5,6}, Wilfried Wurth^{3,4,7}, Oliver Gessner⊙^{2™} & Wolfgang Eberhardt^{3™}

Soft X-ray femtosecond time-resolved photoemission

PHYSICAL REVIEW LETTERS **130**, 108001 (2023)

