

Science at the SQS instrument

Tommaso Mazza European X-ray Free-Electron Laser Facility Small Quantum Systems (SQS) Scientific Instrument

Eurizon 2020+ workshop FEL linac driver and FEL physics applications European XFEL Users' Meeting — Satellite meeting

European XFEL

3

Beamline configurations, photon energies, transmission

Beamline configurations, photon energies, transmission

Scientific scope of SQS

Investigations of the response of atoms, ions, molecules and clusters to intense x-rays and of their ultrafast dynamics

Non-linear phenomena

Intensity > 10^{18} W / cm²

Multiple ionization Multi-photon processes

Time-resolved studies Pulse durations: 2 - 100 fs Pump-probe: NIR/XUV, XUV/XUV

Molecular dynamics Element specific Soft X-rays

Imaging experiments Spatial coherence

Size and shape selection Cluster dynamics

J. Phys. Chem. Lett. 2019, 10, 21, 6536-6544

U. Eichmann et al., Science 369 (2020) 1630

Phys. Rev. Research 4, L022063

5

NQS

Layout of SQS Scientific Instrument

AQS

Atomic-like Quantum Systems Targets: atoms & molecules Detection: electrons, ions, photons

SQS ILH

PP laser 800 nm:

- 15 or 50 fs,
- 0.2mJ@1.1MHz;1mJ@188kHz
- SHG (400nm), THG (266nm) available

Multi-pass cell 1030 nm in development:

- <50 fs,
- 2mJ @MHz rep rate
- SHG (515nm), THG (343nm) available

Monitor

European XFEL

Gas Monitor Detector

Alignment Laser

FEL

SQS-REMI Reaction Microscope

AQS

Targets: molecules Detection: electrons, ions

Angle- and energy-resolved electron and ion spectra in coincidence

Timing / Spectral Diagnostics

Beam Dump

Being installed right now

NQS

Nano-sized Quantum Systems Targets: Cluster, Nano-particles, biomolecules Detection: electrons, ions, photons

 Pair of ~1m long mechanically bendable EEM polished elliptical mirrors

 Compatible with both monochromatic and pink beam operation

 Microfocus can be induced in 3 different interaction regions

7

Atomic-like Quantum Systems (AQS) Endstation

Non-linear interaction with X-rays and ultrafast dynamics of atoms and small molecules

Six electron time of flight spectrometers (eTOF)

- 0.14% of 4π, max rep. rate = 4.5MHz
- E/ΔE > 10000, E_{max}=3000 eV.
 A. De Fanis et al., J. Synchr. Rad. 29, 755 (2022)

Ion spectrometer

 m/Δm > 200, Electrostatic focus tuning for KER resolution

Velocity map imaging spectrometer (VMI)

- 4π collection, 10 Hz (Timepix integration planned);
- $E/\Delta E > 50$, $E_{max} = 1200 \text{ eV}$

Magnetic bottle electron spectrometer

- 4π e-collection + short i-TOF
- coincidence/covariance studies

The interaction of atoms with intense x-ray pulses

- The response of atoms (and molecules and clusters) to intense xray pulses has been the first target of FEL investigations; even for the simplest systems *the response dynamics is yet to be understood* under several aspects!
- **Ground observation:** The non-linear interaction of atoms with x-rays (many photons on the same atom!) results in the production of high charge states [Case of Neon, Young 2010].

8

Competition between sequential ionization and ultrafast Auger decay: hollow atoms

core hole lifetime vs. intensity dependent ionization rate

- Lifetime Ne1s: 2.4 fs
- Ne⁺1s¹2s²2p⁶ → Ne²⁺1s⁰2s²2p⁶ cross section
 @ 1.05keV ~ 100kbarn

DCH rate:

$$r = \sigma[cm^{2}] \cdot I\left[\frac{W}{cm^{2}}\right] / hv[J]$$

$$\approx 0.7 \cdot 10^{14} Hz \ per \ 10^{18} \frac{W}{cm^{2}}$$

This means: $\frac{1}{r} = 2.4 fs$ with $I = 6 \cdot 10^{17} \frac{W}{cm^2} \sim 10^{18} \frac{W}{cm^2}$

CDI: hollow atoms make X-ray scatter without creating damage **Enhanced chemical sensitivity** of double core hole photoemission

Competition between sequential ionization and ultrafast Auger decay: probing the transient ion

Sequential 2-core hole ionization electron spectroscopy

Sequential 2-core hole ionization electron spectroscopy: intensity dependence

SCH: Single Core Hole: Ne $1s^22s^23p^6 + hv \rightarrow Ne^+1s^12s^23p^6 + e^-$

DCH: Double Core Hole: Ne $1s^22s^23p^6 + 2hv \rightarrow Ne^+1s^02s^23p^6 + e^-$

European XFEL

Sequential 2-core hole ionization electron spectroscopy: photon energy dependence

Double core hole resonance in Neon: probing the electronic structure of the core-excited ion

T. Mazza et al., PRX 10, 041056 (2020)

Next step: Non-linear interaction with monochromatic X-rays

Ne1s⁰2s²2s⁶np resonances positions and linewidths

Core excited Ne+ with mono

unpublished

Nano-size Quantum Systems (NQS) *Structure and ultrafast dynamics*

of clusters, nanoparticles and biomolecules

iTOF + VMI:

- iToF mass resolution m/Δm:
 - 450 for thermal ions in VM&iTOF mode
 - 1000 for thermal ions in iTOF mode
- VMI mass resolution m/Δm:
 - 200 for thermal ions
 - 30 for 400eV kinetic energy ions
- Electron VMI:
 - Energy range E<850eV
 - energy resolution 3%

Scattering detectors

- pnCCD (10Hz operation, high dynamic range)
- Mini-SDD (DSSC, MHz rep rate, lower dynamic range)

Sample delivery

- Rare gas clusters / He droplets
- Aerosol source
- COntrolled MOlecules set up
- Pulsed Microplasma Cluster Source

PI: F. Maia (U Uppsala)

X-ray Imaging of Single Proteins

Coherent Diffraction Imaging Experiments at SQS

Aerodynamic lens Veutralizer Counter-electrode Taylor cone Capillary Distream aperture Vray beam Very beam Counter-electrode Particle beam Interaction region Downstream aperture Counter-electrode Counter-elect

- "Diffraction before destruction" concept proven
- Approximate orientation of the protein determined
- Probing the hydration condition of the protein

T. Ekeberg et al., Light: Science & Applications (2024)13:15

Experimental Pattern

Coherent Diffraction Imaging Experiments at SQS

- General problem: determination of the minimum energy configuration of charges on a sphere;
- The sphere is a He droplet; the charges are "marked" with dopant atoms (Xe)

PI: A. Vilesov (U Southern California)

Imaging highly charged superfluid He nanodroplets

A. Feinberg et al., Phys. Rev. Research 4, L022063 (2022)

Reaction Microscope (REMI)

COLTRIMS experiments on atoms and molecules

lons and electrons in coincidence

- Kinetic energies:
 0-50 eV (ions); 0-500 eV (electrons);
- momentum resolution: 1%;
- mass resolution: 1%;
- max rep. rate ~ 200kHz

Sample: supersonic jet, 5-450K

Reaction Microscope (REMI)

- record flight time as well as (x,y) position of each ion and electron
 - reconstruct 3d momentum
 - **coincidence measurements possible if at most 1 molecule ionized per pulse**

gas-phase molecules are randomly oriented!

but: measured 3d ion momenta in coincidence allow to "align" them in the analysis

European XFEL

G. Kastirke et al., Phys. Rev. X 10, 021052

fs-MPI in molecules enabling Coulomb explosion imaging

X-ray pulse

C₅H₄NI

high charges and efficient redistribution leads to prompt Coulomb explosion

Multi-ion coincidence analysis

image the fragmentation following X-ray ionization in the molecular frame

gas-phase molecules are randomly oriented!

but: measured 3d ion momenta in coincidence allow to "align" them in the analysis

create Newton plot of 3 (or more) ions recorded in the same FEL shot

- make iodine momentum point towards $p_x = p_y = 0$, $p_z = 1$
- make nitrogen momentum point towards $p_x = 0$, $p_y > 0$
- plot momentum of any third particle in this coordinate frame

Complete Coulomb Explosion Imaging

molecular structure is very well reflected in measured momenta

- no evidence of deformation or rotation before breakup
- 3-fold ion coincidences are sufficient to image the entire molecule
- no need to record all 11 ions in coincidence, as long as all atoms are charged up fast enough

European XFEL

Boll et al., Nature Physics 18, 423 (2022)

Molecular fingerprints

Coulomb explosion imaging goes time-resolved!

European XFEL

- one of the main objectives of the technique: image molecular dynamics
- first pump-probe experiment: IR-induced vibration and dissociation in CH₂I₂
- here: full 5-fold coincidences, 3D imaging
- direct link between bond distances/angles and ion momenta?
 → modelling!

Coulomb explosion imaging goes time-resolved!

- one of the main objectives of the technique: image molecular dynamics
- first pump-probe experiment: IR-induced vibration and dissociation in CH₂I₂
- here: full 5-fold coincidences, 3D imaging
- direct link between bond distances/angles and ion momenta?
 → modelling!

unpublished

unpublished

Coulomb explosion imaging goes time-resolved!

- one of the main objectives of the technique: image molecular dynamics
- first pump-probe experiment: IR-induced vibration and dissociation in CH₂I₂
- here: full 5-fold coincidences, 3D imaging
- direct link between bond distances/angles and ion momenta?
 → modelling!

unpublished

unpublished

X. Li et al., to be submitted

Outlook: Time-resolved (attosecond) Spectroscopy

Charge migration in the valence opon core ionization

Molecular electron dynamics decoupled from nuclear motion

N 1s⁻¹ in nitrobenzene

Time-resolved Impulsive X-ray Raman Scattering

Conical Intersections in photochemical processes

Nonlinear Attosecond Spectroscopy

Double-core hole formation upon photoionization in Ne

S. Serkez.... A. Grum-Grzhimailo, J. Opt. **20** (2018)

Time-resolved (attosecond) Spectroscopy: New developments at SQS

Single-spike lasing at SASE3

Demonstration at 16.5 GeV with dedicated (strong compression combined with electron beam orbit dispersion) operation mode

Angular streaking for as-diagnostics

Circularly polarized field \rightarrow angular distribution

unpublished

Thank you for your attention !!!

European XFEL