User's meeting 2024 - Eurizon 2020+

Science at the HED-HIBEF instrument

Ulf Zastrau High Energy-Density (HED) science group European XFEL, Schenefeld, Germany

EuXFEL - Jan 23, 2024

HED HiBEF

NEPTUN

High-Energy Density Science

European XFEL

Condensed Matter <> Warm Dense Matter <> Hot Dense Matter

High free-electron density: penetration only up to critical density $n_c = \omega^2 \epsilon_0 m/e^2$

→ access to volumetric plasma parameters only by short wavelength radiation $(\omega > \omega_P)$

HED – research at extremes

Development of the HED-HIBEF instrument

Multi-100 TW ReLaX laser coupled to XFEL beam

Ultra-short relativistic laser pulse interaction with solid target

X-ray probing of relativistic laser plasmas

Platform for Relativistic Plasma science: RELAX 100 TW at IC1

"Standard Configuration"

- 8 keV x-ray pulses
- SAXS + Spectroscopy + PCI
- Challenges on XFEL + laser + sample overlaps.
- Proper shielding of detectors against laserinduced background

Cylindrical compression of thin wires by irradiation of a Joule class short pulse laser (PI: Laso Garcia/ Toncian)

- Aim: Observation of sub ns scale dynamic of laser irradiated wires with new imaging PCI platform
- Results: ablative shock driven radial cylindrical compression of wire material observed for the first time

Cryogenic jet targets at HED

Plattform integration

Experimental Sketch

Implementation

Piezo-driven Chopper device protects the injector nozzle and maintain target stability

- Creates a gap in the jet
- Physically blocks particles, radiation and plasma propagation from the violent laser plasma interaction (ReLaX, DIPOLE)
- Provides alternative path for plasma discharge
- Operates at 10 Hz and scopes with beamline train-jitter (+/- 40 µsec)
- Fast cutting speed (2 m/s) to minimize the nozzle-laser distance at high jet flow velocities (∆y < 3 mm)</p>

CRYO SOURCE AYStill N 17timing ReLaX: 5J, 25 fs Journa DIPOLE: 100 J, 1-10 ns Catcher

Daniel Loureiro & Sebastian Göde

Chopping blade sequence (20 µsec, 2 Million FPS)

200um

 $\sim 1.5 \text{ mm to}$

130,060n

nozzle

Ultrafast expansion in relativisticly intense laser interaction with solids. PI: T. Kluge

- Investigate ultra-fast instability processes in solids under extreme conditions at the nanometer level in relativistic plasmas
- Temporal evolution and discrimination between instabilities/ filamentation

P. Ordyna et al. submitted (2023)

Emission Spectroscopy from 10 µm Cu foil

Offset scan ("offset" here means physical offset between laser and x-ray best-focus spot in vert. direction for different delay scans)

The result of this part of the experiment was the first estimate of **the propagation velocity of the "ionization wave"** in the plasma (approx. 6 × 10⁶ m/s).

PhD work of Mikhail Mishchenko, EuXFEL

FeCO₂ Fe4C3O12

Science within planet Earth – silicates, carbonates

Rev. Min. Geo. 75 (2013)

EARTH SCIENCE

Bridgmanite-named at last

The most abundant mineral in Earth's interior gets a name

- \rightarrow MgSiO₃
- \rightarrow Seismic low velocity zones in the Earth's mantle

Science within planet Earth – the core – iron melt line

Tateno et al., Science 330 (6002), 359 - 361 (2010)

✓ Melting temperature at ICB is 6350 K
✓ hcp is the only stable configuration

Earth dynamo theory – Fe core convection

Measure the Fe melting line →determines boundary (inner/outer core) Influence of impurities (S, Ni) ? Measure conductivity, viscosity

Magnetic fields is prerequisite for life (shield from stellar winds)

Mercury is much smaller than Earth Has magnetic field (Venus, Mars not) *BepiColombo* space mission

Material science, industrial applications

Structure and chemistry at extreme P/T conditions

planetary interiors

new materials

super conductivity

Hydrogen storage

Deformation at ultra-high strain rates

drilling

hardening, peening

space debris

Orbit re-entry shields

Putting on the Pressure:

Earth, and the iron core Central Pressure: 360 GPa 3.6 million atmospheres

Courtesy of S. McWilliams

Preparation of extreme conditions at HED

7 successful DAC (diamond-anvil-cell) experiments were performed in 2022 (5 at IC2, 2 at IC1)

Liermann et al., J. Sync. Rad. 28, 688 (2021)

May 2022: XES at IC1

HED proposal 2592: Kinetics of structural phase transitions in the dynamic diamond anvil cell: bridging static and shock compression

1.1 MHz, Nov 2021

Experiment #2590: X-ray Heating of Low-Z Materials at Static High Pressures DAC community proposal in November 2021

Hot Ag

RT Aq

Hot ice

Cold Ice VII

Cold Ice VII

120

Putting on the Pressure:

Earth, and the iron core

Studies of dynamically compressed matter

Preparation of extreme conditions at HED

Strain rate dependence – dynamic material response

Figure by A. Higginbotham after J. McNaney.

DiPOLE 100X : the most powerful driver installed at X-ray facility

- Diode-pumped, >70 J, 15 ns, 10 Hz
- UK in-kind (EPSRC & STFC)
- 10 M£
- Delivered end 2019
- Commissioned off-line in 2020-2022
- First user experiment in May 2023

High Energy (DiPOLE 100X) and High Intensity (RELAX) lasers in HED/HiBEF laser bay

- 1. Will allow data to be collected thousands of times faster than at any other comparable facility worldwide (10 Hz vs. 7 min = 0.002 Hz)
- 2. High photon energies (18-24 keV) available at EuXFEL provide much more detailed atomic structure information (Large q-space)

Ulf Zastrau, Group leader HED - Jan 23, 2024

New dynamic compression facility at the HED scientific instrument at European XFEL

2 VAREX detectors (10 Hz)

DiPOLE-100X (10 Hz) 40 J at 2ω/70 J at ω, 250 ∝μ/ 500 ∝μ

2 color VISAR & SOP (1 Hz)

XFEL (14 - 24 keV)

Experimental set up in IC2 chamber

VAREX large area x-ray detector for XRD

0

X-ray diffraction with two VAREX detectors

European XFEL

shot on CeO₂ calibrant:

Single X-ray pulse of 18 keV and 400 μJ

Dynamic compression of carbon polymorphs

Publications

Instrument papers

General overview of the HED instrument Zastrau, Appel, Baehtz et al., J. Synchrotron Rad. (2021). 28, 1393–1416 DAC research Diffraction from Diamond Anvil Cell platform at HED - overview Liermann et al., JSR (2021). 28, 688-706 MHz XFEL XRD and modeling of pulsed laser heated DAC N. Jaisle et al., J. Appl. Phys. 134 (9), 095904 (2023) – https://doi:10.1063/5.0149836 MHz XRD set-up for dynamic compression experiments in the diamond anvil cell (dDAC) ▶ R.J. Husband et al., JSR 30 (4), 671–685 (2023), https://doi:10.1107/S1600577523003910 Dynamic optical spectroscopy and pyrometry (SOP) under optical and x-ray laser O.B. Ball et al., J. Appl. Phys. 134 (5), 055901 (2023), <u>https://doi:10.1063/5.0142196</u> A von Hámos spectrometer for diamond anvil cell experiments Kaa et al., JSR 30 (4), 822–830 (2023): https://doi:10.1107/S1600577523003041 **ReLaX:** the HiBEF high-intensity short-pulse laser driver A. Laso Garcia et al., High Power Laser Science and Engineering (2021) - https://doi.org/10.1017/hpl.2021.47 Design and performance of the SAXS HAPG mirror Smid et al., Review of Scientific Instruments 91, 123501 (2020) Design and performance of the HAPG von-Hamos spectrometers Preston et al., Journal of Instrumentation, Volume 15 (2020)

Design and performance of the meV high resolution setup
Wollenweber et al., Review of Scientific Instruments 92, 013101 (2021)

Acknowledgements

We acknowledge contributions to HED's instrumentation from the

Bundesministerium für Bildung und Forschung (BMBF)

through funding via grants 05K19PE2, 05K10PM2, 05K13PM1 and 05K16PM.

We acknowledge funds for research and PhD students from the

Deutsche Forschungsgemeinschaft (DFG)

via grants via FOR2440 and AP262/2-1/-2 and the research unit CarboPat through grant AP262/1-1/-2

German Research Foundation

Federal Ministry of Education and Research

Eurizon 2020+ workshop - UM 2024

HED-HIBEF group (2023)

High-Energy Density Science