

Science at the MID instrument

Dr. Ulrike Boesenberg Instrument Scientist at MID

Hamburg, 23.01.2024

Outline

Introduction to the MID instrument

- X-ray beam parameters and their relevance
 4.5MHz operation
 Hard X-ray self seeding
- Typical measurement techniques and examples for experiments at MID
 - XPCS
- Imaging (holography)
- Ultrafast diffraction
- Mössbauer experiments

The MID instrument: it all started in 2009...

The Materials Imaging and Dynamics (MID) station aims at the investigation of nanosized **structure** and nanoscale **dynamics** using **coherent hard X-rays**. Applications to a **wide range of materials** from hard to soft condensed matter and biological structures are envisaged

(1st MID workshop, Oct 2009 @ ESRF, Grenoble)

Beamline layout and experiment stations

European XFEL

4

Ulrike Boesenberg, MID, EuXFEL 23.01.2024

Tunnel diagnostics

European XFEL

all SASE2 diagnostics vacuum systems are in the tunnel

Courtesy of Jan Grünert and the photon diagnostics group

MID: Materials Imaging and Dynamics Instrument

Madsen et al. JSR 28, 637-649 (2021)

Materials Imaging and Dynamics (MID) experiment

MID overview

Materials Imaging and Dynamics (MID) instrument MHz area detector, 10^6 pix of 200 µm size (AGIPD) Versatile setup, multi-purpose interaction chamber Windowless (in-vacuum setup) or sample in air Sample - detector distance 0.2 - 8 m 2θ up to ~50°, 5 - 25 keV

🖬 📰 📒 European XFEL

Madsen et al. JSR 28, 637-649 (2021)

Materials Imaging and Dynamics (MID) experiment – Detectors

- AGIPD: 1MPix, 4.5MHz capable detector, pixel size 200um, 352 storage cells (352 images/train)
- ePix and Jungfrau detectors: 0.5MPix detectors (2 modules), 50 and 75um pixel size, 10Hz and 16 storage cells (Jungfrau) with 128kHz.
- Gotthard: 50um pixel strip detector. First generation 0.5MHz capable, next generation up to 4.5MHz (used in spectrometer)
- Diamond solid state ion chambers: 4.5MHz pulse resolved intensity monitors and future position sensitive monitors.

Key experimental techniques used at MID

Making use of the coherence, repetition rate, time resolution and high intensity of the X-rays

MHz XPCS

- Small angle scattering geometry (SAXS)
- Wide angle scattering geometry (WAXS)
- At a selected Bragg peak in i.e. combination with pump (optical/electrical/magnetic)

Imaging

- Holography (full-field technique using cone-beam)
- (Bragg-) CDI Coherent diffraction imaging

SAXS/WAXS

- XRD powder pattern
- Beam damage is an issue, especially for solid samples
 - But: we can attenuate the beam and can control the intensity on the sample

Typical beam parameters at MID and their relevance

Hard X-rays 6-25keV

Main working point around 9keV with about 1-2mJ or 10¹² ph/pulse

Repetition rate up to 4.5MHz

essential to investigate the dynamics, provides 220ns as shortest time period between X-ray bunches

XPCS does not work in the "diffract and destroy" regime

Rolling bunch pattern

Monochromatic beam for temporal coherence: important for wide-angle XPCS and imaging applications
 Monochromators are challenged by the bunch structure (heatload)
 Hard X-ray self seeding

Ongoing developments:

- Future also harder X-rays (>30KeV)
- Ultra-short pulses (attoseconds)
- Two-color mode

European XFEL

Time structure of European XFEL

The European XFEL can produce up 27000 X-ray laser flashes per second

Other XFELs typically operate with 100Hz

Bunch train repetition rate 10Hz

Bunch trains: 4.5 MHz total repetition rate

10¹² X-ray photons (~1 mJ) per pulse (<100 fs)</p>

Pulses within train distributed to all beamlines in a predefined pattern

Timing structure offers unique measurement opportunities

Coherent scattering and speckles

In physics, coherence expresses the potential for two waves to interfere.

Also works with 3D real samples...

https://en.wikipedia.org/wiki/Coherence (physics)

By Ebohr1.svg: en:User:Lacatosias, User:Stanneredderivative work: Epzcaw (talk) -Ebohr1.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15229922

Speckle pattern (SAXS) on AGIPD

Sample:Vycor (glass with defined air bubbles)

4

Science at the MID instrument

Coherent X-ray scattering techniques

X-ray Photon Correlation Spectroscopy (XPCS)

- Versatile speckle technique investigating dynamics of disordered systems
- The exact spatial arrangement of the system generates an interference speckle pattern

Ulrike Boesenberg, MID, EuXFEL 23.0	1. State 1.	1.4
	100 10 200	1.00
	1.	1.200
	10.00	1.11.1
	1.1 1.1 1.1 1.1	
	Section of the section of the	
rav		
	 12.200 (196) 	61,200
		10.00

Intensity

Intensity correlation function

Coherent X-ray

$$g^{(2)}(q,\tau) = \frac{\langle I(q,t)I(q,t+\tau)\rangle}{\langle I(q,t)\rangle^2}$$
$$= 1 + \beta |f(q,\tau)|^2$$
$$= 1 + \beta exp(-2\tau/\tau_c)$$

Time

European XFEL

Courtesy of Wonhyuk Jo (MID)

MHz X-Ray Photon Correlation Spectroscopy

Record a time series of speckle patterns (with coherent X-rays)
Calculate a time correlation
Fast dynamics are accessible with the high repetition rate of the EuXFEL

Reiser et al. Nat. Com.(2022)13:5528 Dallari et al. Appl. Sci. (2021)11:8037 European XFEL

Science at the MID instrument

MHz XPCS on aggregation of proteins

Molecular diffusion Aggregation of antibody proteins Agglomeration dynamics Beam induced dynamics – results are dose rate dependent

Reiser et al. Nat. Com.(2022)13:5528

Fig. 3 | **Correlation functions. a** Two-time correlation function, c_2 , of Ig-PEG measured with an average dose rate of 2.04 kGy μ s⁻¹ for q = 0.15 nm⁻¹. **b** Correlation functions for different initial doses ($\mathcal{D}_{rate} = 2.04$ kGy μ s⁻¹, q = 0.15 nm⁻¹). **c** Correlation functions with an initial dose below 5 kGy for different dose rates

at q = 0.15 nm⁻¹. **d** Correlation functions for different momentum transfers fitted with a *q*-squared dependent relaxation rate ($\mathcal{D}_{rate} = 2.04$ kGy µs⁻¹). The error bars represent the standard error over pixels and repetitions. Source data are provided as a Source Data file.

< (μω)

Science at the MID instrument

Split – and – delay – line (SDL)

Ultra short delay (few fs to 800ps) between two X-ray pulses

X-ray pump – X-ray probe experiments

5-10 keV operating range

direct beam "lower branch"

delayed beam "upper branch"

S. Eisebitt (MBI) W. Lu, B. Friedrich et al. (MID)

W. Lu et al. Rev. Sci. Instrum. 89 (6):063121 (2018) Funding via BMBF Verbundforschung under contracts 05K13KT4 and 05K16BC1 is gratefully acknowledged.

17

SASE bandwidth

European XFEL

Hard X-ray self seeding at SA2

S. Lui et al., Nature Photonics (2023) 17:984–991

Monochromatic beam - HXRSS

 Temporal coherence is influenced by monochromaticity
 – important to obtain sufficient contrast

Focus properties suffer from pink beam when using chromatic X-ray lenses (CRLs)

Standard Si-monochromators suffer from the high heat load of the burst mode.

Availability to tune the seeded photon energy

Mössbauer experiments

Observing the 1.4 feV 45-Sc nuclear resonance for the first time!
 Scanning the seeded line around the expected resonance at 12.4 keV
 Looking for fluorescence in the "incoherent channel"

Setup for ultrafast diffraction

- Instrument in WAXS geometryOptical pump X-ray probe
- High resolution Bragg Peak analysis
- Small goniometer setup (in progress)

European XFEL

Courtesy of J.-E. Pudell

800 nm pump – X-ray probe

SrRuO3/SrTiO3 thin film

Pump-probe experiments at MID

fs laser parameters: 800 nm, ~15 fs, ~150 fs jitter (or less), ~0.6 mJ/pulse nanosecond laser also available.

Shayduk et al.: APL (2022)120:202203

Ultrafast strain in heterostructures

24

Science at the MID instrument

Propagation of Waves (Fresnel Number)

- F: Fresnel number
 d: size of the aperture
 Z: distance of the screen from the aperture
- λ : incident wavelength

Single-pulse phase-contrast imaging

- Create a secondary source by focusing the X-rays.
- Cone-beam geometry allows full-field imaging
- Interference of the probing beam and the scattered waves generate the intensity contrast.

Science at the MID instrument

Time-resolved imaging

Andor Zyla CCD, 10 Hz, 6.5 um pixel size, Cone beam hologram @ 14 keV ~100 nm pixel resolution Combined with optical pump laser-> different delays

Ulrike Boesenberg, MID, EuXFEL

laminar water jet

Single-pulse phase-contrast imaging at free-electron lasers in the hard X-ray regime

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

RSITÄT

J. Hagemann et al. J. Synchrotron Rad. (2021). **28**, 52–63

European XFEL

Vassholz et al., Nature Communications(2021) 12:3468; Hagemann et al., J. Synchrotron Rad. (2021). 28, 52–63

Cryostat and pulsed magnetic field setup (PUMA)

European XFEL

PUMA developed with J. Moore (sample env group)

Conclusions

- Versatile instrument for time-resolved coherent X-ray scattering and imaging
- Beamsize ~250 nm 1 mm
- **5** 25 keV
- Windowless, in-vacuum or in-air setup
 MHz integrating pixel detector or high resolution CCD (Hz)
- Optical fs pump laser
- X-ray split-delay line
- Various X-ray optics and beam diagnostics
- Various sample environments

MID, April 2019 2000 pulses/s 9 keV, 1.7 mJ/pulse

Ulrike Boesenberg, MID, EuXFEL 23.01.2024

MID Materials Imaging and Dynamics

31