EuXFEL Usermeeting, 25 January 2023

New regimes in nuclear resonant scattering at the European XFEL

Ralf Röhlsberger

Helmholtz-Institut Jena and Friedrich-Schiller-Universität Jena Deutsches Elektronen-Synchrotron DESY

Nuclear resonances for Mössbauer spectroscopy

Mössbauer spectroscopy with pulsed sources of X-rays a.k.a. Nuclear resonant scattering (NRS)

⁵⁷Fe in a ferromagnetic environment: The nuclear Zeeman effect

Broadband excitation of hyperfine-split nuclear levels

Applications

in all natural sciences

The temporal beat pattern is a fingerprint of the electronic and magnetic structure of the sample.

Structure Determination in Space and Time: Diffraction

New regimes in nuclear resonant scattering

25 January 2023

HI JENA Helmholtz Institute Jena

Milestones in the greater Hamburg research area

1985 @ DORIS by Erich Gerdau, Rudolf Rüffer et al.

2010 @ PETRA III

2022 @ European XFEL

2027 @ XFELO (?)

X-ray sources for excitation of Mössbauer nuclei: Evolution of peak brilliance

From: G. E. Ice, J. D. Budai, J. W. L. Pang, Science 334, 1238 (2011)

HI JENA Helmholtz Institute Jena

How does NRS depend on the number of excitations in the system ?

Single-photon, multi-atom

... Synchrotron radiation

~ 0.01 resonant photons/pulse

Single-photon collective effects

- Single photon superradiance
- Collective Lamb shift

... XFEL SASE radiation

Several 100 resonant photons/pulse

Multi-photon, multi-atom scattering

New phenomena !

- Photon correlations
- Nonlinear effects
- Entanglement, nonclassical states
- Collective effects (e.g. resonance energy shifts)

Multiphoton Collective Lambshift

Cooperative emission from nuclei excited by an x-ray laser

Entering the regime of multiphoton collective excitations

Superradiance of an ensemble of nuclei excited by a free electron laser

Aleksandr I. Chumakov 1,2*, Alfred Q. R. Baron 3*, Ilya Sergueev4, Cornelius Strohm4, Olaf Leupold4, Yuri Shvyd'ko⁵, Gennadi V. Smirnov², Rudolf Rüffer¹, Yuichi Inubushi⁶, Makina Yabashi[™], Kensuke Tono⁶, Togo Kudo³ and Tetsuya Ishikawa³

First time-resolved measurement of multi-photon NRS

a

www.hi-jena.de

Helmholtz Institute lena

Multiphoton Collective Lambshift in Nuclear Resonant Scattering

Goal: Study the spectral dependence of multiphoton NRS

European XFEL Proposal #2778 17 – 23 May 2022

The Team

Jena

Ingo Uschmann Berit Marx-Glowna Sakshath Sadashivaiah Kai Sven Schulze Robert Loetzsch Willi Hippler Gerhard Paulus Ralf Röhlsberger

High-purity polarimetry

Hamburg (DESY)

Cornelius Strohm Hans-Christian Wille Olaf Leupold Ilya Sergeev

Lars Bocklage Kai Schlage Sven Velten Ralf Röhlsberger

Sample preparation, data acquisition and processing ...

Heidelberg

Jörg Evers Thomas Pfeifer Miriam Gerharz Christoph Keitel

Freiburg Dominik Lentrodt

Theory, data analysis, evaluation

European XFEL

The MID team Anders Madsen Jörg Hallmann et al.

The Data analysis group Luca Gelisio

James Wrigley et al.

The HXRSS group Gianluca Geloni et al. Shan Liu (DESY)

First nuclear forward scattering experiment at the European XFEL

New regimes in nuclear resonant scattering

25 January 2023

Mössbauer Isotopes with $\Gamma_0/E_0 < 3 \times 10^{-13}$

sotope	Energy	Linewidth	Γ ₀/Ε	natural lifetime	natural abundance	conversion
²²⁹ Th	∟₀ (ev) 8.3	~10 ⁻¹⁹	~10 ⁻²⁰	$10^2 \dots 10^3 s$	N/A	>2000 (?)
⁵⁷ Fe	14413	4.7x10 ⁻⁹	3x10 ⁻¹³	141 ns	2.4 %	8.6
⁷³ Ge	13260	1.5x10 ⁻¹⁰	1x10 ⁻¹⁴	2.0 μs	7.8 %	1100
¹⁸¹ Ta	6230	6.7x10 ⁻¹¹	1x10 ⁻¹⁴	4.7 μs	100 %	46
⁶⁷ Zn	93319	5.1x10 ⁻¹¹	5x10 ⁻¹⁶	6.4 μs	4.1%	0.9
⁴⁵ Sc	12400	1.4x10 ⁻¹⁵	1.1x10 ⁻¹⁹	0.46 s	100 %	>400
¹⁰⁹ Ag	88000	1.1x10 ⁻¹⁷	1.2x10 ⁻²²	27.6 s	48 %	26

⁴⁵Sc: Main problem for conventional Mössbauer measurements: No convenient radioactive source available.

Besides that, ⁴⁵Sc appears to be very attractive:

- High Lamb-Mössbauer factor (~0.7) due to low photon energy (12.4 keV)
- Isotopic abundance 100%
- Very high Q factor: $E_0/\Gamma_0 \simeq 10^{19}$

History

Resonant excitation of ⁴⁵Sc using 12.4-keV x-rays from accelerator-based x-ray sources of high spectral brightness was predicted to be feasible:

Yu. Shvyd'ko and G.V. Smirnov
On the direct measurement of nuclear
γ-resonance parameters of long-lived
(> 1s) isomers
Nucl. Instrum. Meth. B 51, 452-457 (1990)

Attempts to detect the ⁴⁵Sc resonance at 3rd generation SR sources were so far unsuccessful (spectral brightness too low).

4. Numerical estimates for ¹⁰⁹Ag and ⁴⁵Sc

As a second example we shall consider the y-resonance of ⁴⁵Sc nuclei ($E_0 = 12.4 \text{ keV}, \tau_0 = 0.46 \text{ s}$) [17]. In this case the observation of the γ -resonance is difficult, not only due to its small energy width, but also due to the absence of a suitable parent radioactive nucleus that could be used as a resonant γ -radiation source. Therefore we shall assume the ⁴⁵Sc nuclei to be irradiated by synchrotron radiation with a white spectrum. According to ref. [18], by using undulators on electron-positron storage rings of the new generation, it will be possible to achieve a γ -quanta flux with a spectral density of about 10^{13} quanta/(seV) (in the energy range of 12 keV). This means that in this case $N_{\Gamma_0} \approx 0.01$ quanta/s will fall in the band of natural width of γ -resonance in ⁴⁵Sc. The

The ⁴⁵Sc collaboration

Argonne National Lab

Yuri Shvyd'ko Peifan Liu Deming Shu Brandon Stone Antonino Miceli

FSU Jena

Ralf Röhlsberger Ingo Uschmann Robert Loetzsch Berit Marx-Glowna Willi Hippler

MPIK Heidelberg

Jörg Evers Miriam Gerharz

SOLARIS, Kracow Tomasz Kolodzeij

Texas A&M University Olga Kocharovskaya Xiwen Zhang

DESY

Olaf Leupold Hans-Christian Wille Lars Bocklage Christian Grech Shan Liu

European XFEL

Gianluca Geloni and the HXRSS Team Anders Madsen Jörg Hallmann Alexey Zozulya Ulrike Boesenberg Mohamed Youssef Angel Rodrigues-Fernandez Naresh Kujala

The 12.4 keV nuclear resonance of ⁴⁵Sc : Perspective

⁴⁵Sc level diagram

 $\frac{3/2+}{7_{0}\simeq 460 \text{ ms}}$ $\frac{12.4 \text{ keV}}{\tau_{0}\simeq 460 \text{ ms}}$ $\frac{1000}{\sqrt{5}}$ $\frac{1000}{\sqrt{5}}$ $\frac{1000}{\sqrt{5}}$ $\frac{1000}{\sqrt{5}}$

www.hi-jena.de

⁴⁵Sc

 $E_0 = 12.4 \text{ keV}$

 Γ_0 = 1.4 feV

- $Q = E_0 / \Gamma_0 = 10^{19}$
- λ = 0.1 nm
- $\tau_0 = 460 \text{ ms}$

(1) Exceeding the Q-factors of

- (a) the majority of optical transitions in modern atomic clocks
- (b) all measurable Mössbauer resonances by orders of magnitude.

(2) Applications in extreme metrology, e.g.,

- (a) development of a nuclear clock superior to the state-of-art atomic optical clocks
- (b) testing of fundamental principles of physics.

New regimes in nuclear resonant scattering

Why European XFEL?

- (1) Hard x-ray self-seeded (HXRSS), high rep rate (HRR) XFELs may provide average spectral flux > 1000 than ESRF, APS, SPring-8, or PETRA-III
 O. Chubar et al., JSR 23 410 (2016)
- (2) The European XFEL is the 1st HXRSS HRR XFEL W. Decking et al., Nat. Photonics 14, 391 (2020)
- (3) The European XFEL time structure is ideally suited for the detection of the ⁴⁵Sc-resonance: sub-ms pulse trains with a 100-ms dark time.

Data and graphics courtesy Gianluca Geloni

Details about the ⁴⁵Sc experiment to be inserted here after publication

Poster #68

Miriam Gerharz et al.

Direct x-ray-excitation of the ultra-narrow nuclear resonance of ⁴⁵Sc

Thank you very much for your attention !

