

Ultrafast core level spectroscopy on FELs: XPS and XPD

XPS: chemical sensitivity and many-body effects

XPS: chemical sensitivity and many-body effects

Lorentzian line shape (lifetime)

broadening by phonons in the excitation process (Lorentzian convoluted with Gaussian)

> for metals: asymmetric because of electron-hole pair excitations (Doniach-Sunjic)

> > P. H. Citrin *et al.*, Phys. Rev. B **16**, 4256 (1977)

J. E. Demuth and D. A. Eastman, Phys. Rev. Lett. **32**, 1123 (1974) S. Bao, Ph. Hofmann, K.-M. Schindler, V. Fritzsche, A. M. Bradshaw, D. P. Woodruff, C. Casado and M. C. Asensio, J. Phys.: Condens. Matter **6** L93, (1994).

C 1s XPS

X-ray Photoelectron Diffraction (XPD, PhD)

D. P. Woodruff and A. M. Bradshaw, Rep. Prog. Phys. 63, 1029 (1994)

X-ray Photoelectron Diffraction (XPD, PhD)

D. P. Woodruff and A. M. Bradshaw, Rep. Prog. Phys. 63, 1029 (1994)

S. Lizzit *et al.*, Nature Physics **6**, 345 (2010)

C 1s XPS

S. Bao, Ph. Hofmann, K.-M. Schindler, V. Fritzsche, A. M. Bradshaw, D. P. Woodruff, C. Casado and M. C. Asensio, J. Phys.: Condens. Matter **6** L93, (1994). see also J. E. Demuth and D. A. Eastman, Phys. Rev. Lett. **32**, 1123 (1974)

C 1s XPS

S. Bao, Ph. Hofmann, K.-M. Schindler, V. Fritzsche, A. M. Bradshaw, D. P. Woodruff, C. Casado and M. C. Asensio, J. Phys.: Condens. Matter 6 L93, (1994). see also J. E. Demuth and D. A. Eastman, Phys. Rev. Lett. 32, 1123 (1974)

C 1s photoelectron diffraction

C 1s XPS

S. Bao, Ph. Hofmann, K.-M. Schindler, V. Fritzsche, A. M. Bradshaw, D. P. Woodruff, C. Casado and M. C. Asensio, J. Phys.: Condens. Matter **6** L93, (1994). see also J. E. Demuth and D. A. Eastman, Phys. Rev. Lett. **32**, 1123 (1974)

C 1s photoelectron diffraction

Coherent phonons

on Bi(114)

Leuenberger et al., Phys. Rev. Lett. **110**, 136806 (2013)

on Bi₂Se₃

J. A. Sobota et al., Phys. Rev. Lett. 113,157401 (2014)

Ultrafast core level spectroscopy on FELs: **XPS and XPD**

- Or at least:

intensity: angle-resolved, time-resolved

Track binding energy, lineshape and intensity, resolved in time and angle.

lineshape: time-resolved but angle-integrated

ultrafast XPS @ FLASH

- low repetition rate, inefficient electron detection, low count rate
- space charge

M. Dell'Angela et al., Surf. Sci. 643, 197 (2016)

S. Hellmann et al., New Journal of Physics 14, 013062 (2012)

momentum microscopy @ FLASH

much more efficient electron detection

• space charge issues

D. Kutnyakhov et al., Rev. Sci. Instr. 91, 013109 (2020)

ultrafast XPS line shape analysis

M. Dendzik et al., Phys. Rev. Lett. **125**, 096401 (2020)

core-hole screened by QFCs

Solid State Communications, Vol.42, No.9, pp.637-639, 1982. Printed in Great Britain.

TEMPERATURE DEPENDENCE OF X-RAY PHOTOEMISSION SPECTRA: FERMI-SEA RECOIL EFFECTS

S. Satpathy and John D. Dow Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A.

Solid State Communications, Vol.42, No.9, pp.637-639, 1982. Printed in Great Britain.

TEMPERATURE DEPENDENCE OF X-RAY PHOTOEMISSION SPECTRA: FERMI-SEA RECOIL EFFECTS

S. Satpathy and John D. Dow Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A.

J. Ch. Johannsen et al., Phys. Rev. Lett. 111, 027403 (2013).

electronic temperature from XPS lineshape

J. Ch. Johannsen et al., Phys. Rev. Lett. 111, 027403 (2013).

D. Curcio et al., Phys. Rev. B 104, L161104 (2021)

D. Curcio et al., Phys. Rev. B 104, L161104 (2021)

time-resolved XPD: coherent phonons in Bi₂Se₃

Wang, B.-T. et al., Applied Physics Letters **100**, 082109 (2012)

time-resolved XPD: coherent phonons in Bi₂Se₃

time-resolved structure (preliminary)

Change in interlayer spacing

- promising initial experiments for time-resolved XPS and XPD with new and unexpected effects
- very challenging experiment in terms of achieving sufficient statistics
- space charge continues to be a real issue
- substantial gain at XFEL due to higher photon energy range

conclusions

<u>Aarhus University</u>

Davide Curcio Klara Volckaert Paulina Majchrzak Sahar Pakdel Deepnarayan Biswas Federico Andreatta Sanjoy K. Mahatha Marco Bianchi Nicola Lanata Jill A. Miwa Søren Ulstrup Philip Hofmann

ETH Zürich

Kevin Bühlmann Rafael Gort **Yves Acremann**

CAU

Kiel University Florian Diekmann Kai Rossnagel

<u>Central Laser Facility</u> Charlotte E. Sanders

FLASH, Desy

Dmytro Kutnyakhov Michael Heber Nils Wind Federico Pressacco Günter Brenner Siarhei Dziarzhytski Harald Redlin Wilfried Wurth

Chemnitz University of **Technology** Florian Speck Thomas Seyller

Johannes Gutenberg University

Steinn Agustsson Jure Demsar Katerina Medjanik **Dmitry Vasilyev** Hans-Joachim Elmers Gerd Schönhense

Forschungszentrum <u>Jülich</u>

Ying-Jiun Chen Christian Tusche

