Electron Dynamics of Light Harvesting Systems

Geoff Thornton

London Centre for Nanotechnology University College London

Science and Technology Facilities Council

Engineering and Physical Sciences Research Council Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Input from solar radiation ~10⁸ GW

Photocatalytic water splitting on TiO₂:

Artemis lab, Central Laser Facility, STFC

- XUV: ~30 fs, 10 100 eV, 10⁸ photons/pulse
- IR-UV: ~40 fs, **15 μm 235 nm**
- Repetition rate : 1 kHz
- <u>Condensed matter physics</u> & Atomic/molecular physics stations

IR/UV-pump XUV-probe measurements on rutile TiO₂

Y. Zhang, D.T. Payne, C.L. Pang, C. Cacho, R.T. Chapman, E. Springate, H.H. Fielding, G. Thornton, J. Phys. Chem. Lett. 10 5265 (2019)

IR/UV-pump XUV-probe measurements on rutile TiO₂

Y. Zhang, D.T. Payne, C.L. Pang, C. Cacho, R.T. Chapman, E. Springate, H.H. Fielding, G. Thornton, J. Phys. Chem. Lett. 10 5265 (2019)

IR-pump XUV-probe measurements

Pump: λ = 1300 nm, 0.95 eV, 4 mW, Probe: 20.9 eV

- Hot electron lifetime of about ~45±10 fs
- Surface Photo-Voltage effect lasts longer than 2 ps

UCL

IR-pump XUV-probe measurements—hot electrons

Pump: λ = 1300 nm, 0.95 eV, 4 mW, Probe: 20.9 eV

Y. Zhang, D.T. Payne, C.L. Pang, C. Cacho, R.T. Chapman, E. Springate, H.H. Fielding, G. Thornton, J. Phys. Chem. Lett. 10 5265 (2019)

UV-pump XUV-probe measurements

Pump: λ = 350 nm, 3.5 eV, 1 mW, Probe: 30.4 eV

Longer time decay points to BGS-mediated recombination

X-FEL--IR/UV Pump →chemical state surface sensitive Tr-PES experiments

IR/UV Pump, surface sensitive X-ray probe experiments

Time dependent dissipation, formation of adsorbate intermediates

[±]UCL

IR/UV Pump, surface sensitive X-ray probe experiments

week ending 8 FEBRUARY 2008

Defect States at the TiO₂(110) Surface Probed by Resonant Photoelectron Diffraction

P. Krüger,¹ S. Bourgeois,¹ B. Domenichini,¹ H. Magnan,² D. Chandesris,³ P. Le Fèvre,³ A. M. Flank,³ J. Jupille,⁴ L. Floreano,⁵ A. Cossaro,⁵ A. Verdini,⁵ and A. Morgante^{5,6}

300 K: BGS (polarons) delocalised over several in-plane and subsurface Ti atoms

XFEL pump probe—time and spatially dependent dissipation/recombination processes

UC

IR/UV Pump, X-ray probe experiments on dye sensitized metal oxides

- HOMO-LUMO excitation induced chemical shift.
- Element specified charge transfer to metal oxide dynamics.

Ambient pressure photoemission end station

electron dynamics of photoelectocatalysis at solid/liquid interfaces

C. Byrne, K.M. Zahra, S. Dhaliwal, D.C. Grinter, K. Roy, W.Q. Garzon, G. Held, G. Thornton, A.S. Walton, J. Phys. D Appl. Phys. **54** 194001 (2021) 15

Ambient pressure photoemission end station

electron dynamics of photoelectocatalysis at solid/liquid interfaces

10 nm ultrathin layer

C. Byrne, K.M. Zahra, S. Dhaliwal, D.C. Grinter, K. Roy, W.Q Garzon, G. Held, G. Thornton, A.S. Walton, J. Phys. D Appl. Phys. **54** 194001 (2021) 16

Time resolved XPS with free electron lasers

C 1s (hv=647 eV) of surface CO to CO_2 after UV/Vis pulse excites O_2 via anatase Ti O_2

Recorded using FLASH

Noei et al, ACS Catal 10 13650 (2020)

≜UCL

Time Resolved Photoemission Light Harvesting SXP

Future Prospects:

- TR-ARPES of conduction band/LUMO states
- C,N,O core level photoemission to investigate intermediate species in water chemistry, photodegradation on transition metal oxides
- Time resolved photoelectron diffraction to follow electron dissipation following pump pulse
- DSSC, hybrid perovskites-- element-specific recombination paths and charge transfer to electron and hole collectors
- Tender X-ray (3 keV) measurements of photoelectrochemistry, photovoltaics, photodegradation at liquid/solid interfaces