Correlated electrons and new temperature scales at the surfaces of 4f materials

by Denis Vyalikh

Donostia International Physics Center (DIPC) San Sebastian, Spain

"Unveiling the diversity and beauty of 4f physics with photoemission at the surface and in the bulk..."

Extraordinary properties of 4f materials

...in the **bulk** including complex magnetic phases, unconventional superconductivity, heavy-fermion properties, Kondo physics, quantum criticality, valence fluctuations, and others...

...reasonable to anticipate that the **4f**-driven **physics** at the **surface** can be even much **richer** and more **compelling** than in the bulk.

Lack of inversion symmetry and spin-orbit coupling (SOC), appearance of surface-electron states and resonances, relaxation and reconstruction, as well as strong changes of the crystal-electric field near and at the surface are the driving forces for novel 4f-driven phenomena, phases and temperature scales that are in remarkable difference to those in the bulk...

Extraordinary properties of 4f materials

...in the **bulk** including complex magnetic phases, unconventional superconductivity, heavy-fermion properties, Kondo physics, quantum criticality, valence fluctuations, and others...

* filling of the 4*f* shell: [Xe] $4f^n (5d6s)^m$

Band-width proportional to overlapp of orbitals:

- \rightarrow width of **4***f***-bands** ~ **10**th of meV;
- \rightarrow highly localized;
- \rightarrow atomic-like magnetic moments.

RT₂Si₂ compounds (R = rare-earth, U; T = Co, Rh, Ir):

Playground for studying electron correlation phenomena

Electronic properties and magnetic phenomena in magnetically active 4*f*-based nanostructural objects. A kind offer from RET₂Si₂

- The silicide **Si-T-Si-RE** surface allows to **design** a system for different scenarios **combining** fundamental interactions like **spin-orbit**, **Kondo**, **crystal-electric field**, and **exchange magnetic** interactions and to study the diversity of physics at reduced dimensionality;
- It becomes useful for systematic studies of the **interplay** between fundamental *f*-driven properties and the **emergent Rashba effect**.
- **Magnetically**-active *f*-based **nanostructures** with **Si**, **Ge**, **P** are attractive for **novel** electronic and magnetic **applications**;

RET₂Si₂ materials for systematic studies of *f*-driven physics at the surface

Angle-Resolved Photoelectron Spectroscopy

ARPES

- It measures **band structure** of crystalline solids ...
- It also measures **interactions** ...

Heavy-Fermion systems:

CeRh₂Si₂ and YbRh₂Si₂

- Screening of the local magnetic moments in the strong coupling limit → Kondo effect
- *f-d* hybrid formation in Kondo-lattice compounds → 4*f* admixture to conduction band leads to "heavy fermions"

f-d hybridization leads to non-crossing behavior and *4f-* admixture to the *d-* band

k-dependence of the crystal-field splittings of 4f's seen in ARPES for YbRh₂Si₂

k-dependence of the crystal-field splittings of 4f's seen in ARPES for YbRh₂Si₂

Application of ARPES allows to comprehensively explore the Kondo-lattice materials and :

- To find the hot regions in *k*-space where *f*-*d* interaction occurs,
- To disclose the fine spectral pattern of this interplay,
- To investigate the CEF scheme and dispersion of the *f*-states,
- To analyze the symmetry properties of the band-like *f*-states,
- To explore the *f*-derived Fermi surface and its properties.

Heavy-fermion compound CeRh₂Si₂: Surface and bulk electronic structure

- Ce at surface sites: Weak Kondo-peak at E_F ("4f¹") strong ionization peak ("4f⁰"
 ⇒ weakly hybridized
- Ce in the bulk: Strong Kondo-peak at E_F ("4f¹"), weak ionization peak ("4f⁰")
 ⇒ strongly hybridized

Heavy-fermion compound CeRh₂Si₂: Surface and bulk electronic structure

Nature Comm. 7 11029 (2016)

CeRh₂Si₂: Temperature dependence of the Kondo peak for surface and bulk

- crystal electric field (CEF) splitting of $4f_{5/2}^1$ suppressed at surface
- strong **temperature dependence** of the Kondo peak

npj Quantum Materials 5 70 (2020).

CeRh₂Si₂: Temperature dependence of the Kondo peak for surface and bulk

- Stronger damping of the Kondo-peak in bulk as compared to surface,
- **Opposite behavior expected** from hybridization strength!

npj Quantum Materials 5 70 (2020).

Observation of ferromagnetic silicide surface

AFM below $T_N = 24.5 \text{ K}$

Nature Comm. **5** 3171 (2014). Nature Comm. **10** 796 (2019).

.

EuRh₂Si₂

15

Surface state in the Si-Rh-Si-Eu surface block

Si 16 RE

EuRh₂Si₂

1.1

1.0

The ARPES-derived temperature evolution of the magnitude of the spin splitting

AFM order in the **bulk** starts at $T_N \sim 24.5$ K,

while the **Si-Rh-Si-Eu surface** becomes **ferromagnetic** already at **41 K** !!!

The spin splitting reaches a value of 150 meV

EuRh₂Si₂

Nano Letters 17 811 (2017).

EuIr₂Si₂: Valence fluctuating material discovered in 1986

- continuous valence change from 2.8 (4.2 K) to 2.2 (300 K);
- no magnetic ordering down to 4.2 K in the bulk;

i) **Spin-orbit coupling** (Rashba effect) is **highly anticipated** at the **Si-Ir-Si-Eu** surface;

ii) **Valence-fluctuating properties** have **not** been **well explored** by **ARPES** so far.

A huge Eu 2+ PE signal below Si-Ir-Si is a surprise ©

npj Quantum Materials 4 26 (2019).

EuIr₂Si₂: ARPES insight into the valence fluctuation

EuIr₂Si₂: Strong spin-orbit coupling and magnetism! ⁽²⁾

200 K

npj Quantum Materials 4 26 (2019).

7 K

EuIr₂Si₂: Strong spin-orbit coupling and magnetism! ^(C)

nonmagnetic surface

magnetic surface with Rashba interaction

Gustav Bihlmayer NJP (2005).

EuIr₂Si₂: New temperature scale at the surface

Eu 4*f* moments order below 48 K. The emerging exchange interaction modifies the spin polarization of the 2D surface electrons originally induced by the strong Rashba spin-orbit coupling effect.

EuIr₂Si₂: Non-magnetic in the *bulk*, strongly ferromagnetic at the *surface*

Surface of YbIr₂Si₂: 2D Kondo lattice with strong spin-orbit coupling

Si-Ir-Si-Yb surface block

Phys. Rev. B 98 195438 (2018) (Editors' Suggestion).

Temperature-dependent *f-d* hybridization

Phys. Rev. B 98 195438 (2018) (Editors' Suggestion); Phys. Rev. Lett. 124 237202 (2020).

Outline of research activities:

2D-4f based systems

4*f*-electron systems;

... a veritable construction kit with **spin-orbit**, **Kondo**, **crystal-electric field**, and **exchange magnetic interactions** as building blocks...

... to **design systems** for different scenarios and to study the **diversity** of **physics** driven by *f-d* **interactions**...

Outline of research activities:

2D-4f based systems

Energy

... a veritable construction kit with spin-orbit, Kondo, crystal-electric field, and exchange magnetic interactions as building blocks...

... to design systems for different scenarios and to study the **diversity** of physics driven by *f-d* interactions...

Acknowledgements

Cornelius Krellner

Kristin Kliemt

Khadiza Ali

Max Mende

Dima Usachov

Susanne Schulz

Kurt Kummer

Monika Güttler Alexander Generalov

Arthur Ernst

ikerbasque Basque Foundation for Science

