Complete ultrafast PES @ SXP/EuXFEL

- Science cases
- Instrumentation
- First experiments
- Future direction

Kai Rossnagel (on behalf of the TR-XPES User Consortium and the XFEL-k-Spin-multi-D Project Team)

Ruprecht Haensel Laboratory

Kiel Nano, Surface and Interface Science KiNSIS

Kiel University

Deutsches Elektronen-Synchrotron DESY

Kiel University Christian-Albrechts-Universität zu Kiel

Function by interfaces ("1 + 1 > 2")

"The interface is (still) a new material, the device, and the catalyst."

Insulator + insulator = interface metal (superconductor)

= correlated insulator (superconductor?)

SEMICONDUCTOR

 $\Phi^o_{R,n}$

 E_{CBM}

METAL

Function via dynamics

"If you want to understand function, study structure" ... and dynamics!

Science cases

Dynamics of electronic, magnetic, chemical, and geometric structure in materials and at interfaces

The technique

Complete time-resolved soft x-ray photoelectron spectroscopy

femtosecond time resolution (via pump-probe)

+

tunable MIR-THz pump

low-energy resonances

ŧ

tunable soft x-ray probe

- interface sensitivity
- 3D momentum selectivity
 - core resonances
 - forward scattering

+

ultra-efficient 3D energy-momentum detection

+ (ultra-efficient 2D spin detection)

=

complete ultrafast "core-*cum*-conduction(-*cum*-spin)" photoelectron spectroscopy

The source & instrument: kHz···MHz-XFEL + ToF k-mic

Highest repetition rate of soft x-ray pulses + highest efficiency in photoelectron detection

HEXTOF @ PG2 / FLASH

"The momentum microscopy (ARPES) and photoelectron diffraction (XPD) machine"

CuPc / TiSe₂: "*E*_F" + C 1s

Spectral, angular, and temporal dissection of intertwined charge, orbital, and structure dynamics

HOMO momentum map

C 1*s* momentum map

CuPc / TiSe₂: " E_F " **Time-resolved ARPES (k-microscopy)** Kiana Baumgärtner Markus Scholz 769 meV 769 meV CuPc LUMO (B) exp Pump - probe delay (ps) -0.5 0.5 1.0 1.5 0.0 180 meV 180 meV - 0.20 1.0-TiSe₂ Ti 3d (A) ~ (Å' - 0.10 - 10⁻³ - 0.05 E - E_F (eV) 0.5-- 0.00 10 $k_{x}(Å)$ **CuPc HOMO**(C) -295 meV -244meV -295 meV 0.0 - 2.0 ╋ - 1.0 -0.5-TiSe₂ Ti 3d (E) - 0.5 - 0.0 Se 4p (D) -1.0 100 t_0 t₁ () 0.0 *I*_1 l_2 щ -0.5 щ -1.0 $h\nu_{\rm probe} = 36.3\,{\rm eV}$ $h\nu_{\rm pump} = 1.6\,{\rm eV}$ $-2 -1 0 1 2 k_x(\text{\AA}^{-1})$ $-2 -1 0 1 2 k_x(\text{\AA}^{-1})$ -2 -1 0 1 2 -2 -1 0 2 $k_{x}(\text{\AA}^{-1})$ $k_{x}(\text{\AA}^{-1})$ $F \approx 3.5 \,\mathrm{mJ/cm^2}$ *t*₂ t_0 t_1 t₁

CuPc / TiSe₂: C 1s

Time-resolved XPS

CuPc / TiSe₂: C 1s

Time-resolved XPS cum XPD

ToF k-mic @ SXP/EuXFEL

Complete time-resolved soft x-ray core-cum-conduction(-cum-spin) photoelectron spectroscopy

HHG	PG2/FLASH
$\leq 500\mathrm{kHz}$	$5\mathrm{kHz}$
$\lesssim 100{\rm eV}$	$24 \cdots 730\mathrm{eV}$
trARPES	trXPS trARPES trXPD
SXP/EuXFEL	NEH 2.2/LCLS-II
SXP/EuXFEL 27/3 kHz	NEH 2.2/LCLS-II 1 MHz
$\frac{\text{SXP/EuXFEL}}{27/3 \text{ kHz}}$ $\gtrsim 700 \text{ eV}$	NEH 2.2/LCLS-II 1 MHz 250 · · · 1600 eV

Contributions to SXP ("Open Port")

Total BMBF funding (Hamburg, Mainz, Kiel, Duisburg, 2013–2022): 5.1 MEUR

Multi-channel delay-line detector

First experiments: 2D materials (+ molecules) CAU Kiel / DESY Hamburg

Layer-selective pump–probe in TMDC heterostructures

Ultrafast spincrossover on TMDC surfaces

Rohlf *et al.*, J. Phys. Chem. C **123**, 17774 (2019)

First experiments: Topological & correlated materials

KTH Stockholm / JGU Mainz

Ultrafast dynamics of coexisting electronic orders

Future direction

Tracking of coherent electron dynamics in quantum materials with 5-fs soft x-ray pulses

few-100 as spectroscopy	$ au_{ m e-e}pprox 10{ m fs}$	few-10 fs spectroscopy
1 fs	10 fs	100 fs
ultrahigh time resolution	$5 \mathrm{fs} \iff 360 \mathrm{meV}$	high energy resolution
Electron motion	Coherence Incoherence	Relaxation & thermalization

- laser-induced coherences
- Coulomb-induced correlations
 - resonantly coupled excitations
 - quantum-kinetic retardations

cf. Axt & Kuhn, *Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics*, Rep. Prog. Phys. **67**, 433 (2004)

Quantum materials dynamics in real time

- observe on timescales shorter than typical interaction times
- control the outcome of interaction processes

Quantum engineering of correlated many-particle states

Image: Complete ultrafast photoelectron spectroscopy at SXP/EuXFEL | Kai Rossnagel, 24 Jan 2022
 Image: Complete ultrafast photoelectron spectroscopy at SXP/EuXFEL | Kai Rossnagel, 24 Jan 2022

de la Torre et al., Rev. Mod. Phys. 93, 041002 (2021)

Band engineering