Advanced operation schemes: two-color, split & delay

Production of two FEL pulses of different wavelengths with a controllable temporal delay

(and)

Splitting the FEL pulse into two sequential pulses

at SASE3

Outline

Why do we need two color pulses?

How can we produce and deliver them

X-ray split and delay device

Combination of the both

Other schemes under study

Baseline SASE3 operation

SASE3 undulator (21 segments)

SASE3 undulator tuned to radiate at wavelength λ

Single SASE pulse is transported to the SQS/SCS instrument

Two-color SASE3 operation

SASE3 undulator (21 segments) + magnetic chicane

Magnetic chicane = electron beam delay

- Electron beam is delayed in the magnetic chicane
- Delay can be chosen by tuning the magnetic field (up to *ps* with sub-fs precision)
- U2 radiation comes always after (e-beam is delayed only)
- If wavelengths differ significantly, shorter wavelength goes first (preferably).

[1] G. Geloni, et al, "Scheme for femtosecond-resolution pump probe experiments at XFELs with two-color ten GW-level X-ray pulses", arXiv:1001.3510 [2] T. Hara et al. "Two-colour hard X-ray free-electron laser with wide tunability", doi:10.1038/ncomms3919.

[3] A. A. Lutman et al. "Experimental Demonstration of Femtosecond Two-Color X-Ray Free-Electron Lasers", doi:10.1103/PhysRevLett.110.134801.

European XFEL

Two-color SASE3 operation

SASE3 undulator (21 segments) + magnetic chicane + optical delay

Magnetic chicane + mirror chicane = arbitrary delay

- Electron beam is delayed in the magnetic chicane
- Photon beam gets delayed in the optical chicane
- Keep the mirrors fixed, tune using the magnetic chicane

Case study for SQS at 630/250 eV

SASE3 undulator (21 segments) + magnetic chicane + optical delay

Baseline 20pC e-beam after SASE1

Here we optimized for short pulses

European XFEL

Mean Energy/pulse: 7e-5 J Second undulator (first pulse) 250 eV Mean #ph/pulse : 1.75e12 x 10¹⁰ x 10⁻⁴ 10 1 µm fwhm 1.5 20 (3 fs) 8 15 of shots ЪΜ 6 Ē 4 0.5 shot energy [J] x 10 2 70 µJ 0 0 10 40 2 3 20 30 0 4 0 s (µm) x 10¹⁰ X TU 8 10 7 30 GW 6 8 P(A) [arb.units] 5 ЪΜ 6 4 3 4 2 2 1 0 0 4.95 5.05 10 30 40 4.9 5 20 0 z [m] European XFEL λ [nm]

Svitozar Serkez (on behalf of WP72, SCS, SQS)

Advanced operation schemes: two-color, split & delay

8

24.01.2017

Two sources problem

Two sources and one focusing system -> two images Two mirrors -> only one image without aberrations

We can tune both KB mirrors to image the intermediate spot in both planes

European XFEL

Concept of optical X-ray split and delay device (XBSD) for SASE3 (by Alexander Yaroslavtsev)

European XFEL

Concept of optical X-ray split and delay device (XBSD) for SASE3 (by Alexander Yaroslavtsev)

Two-color SASE + XBSD combination

(by Alexander Yaroslavtsev)

(by Alexander Yaroslavtsev)

Two-color SASE + XBSD combination

 $\lambda_x == \lambda_x (sase)$

λ₂

λ₁

Two-color SASE + XBSD combination

(by Alexander Yaroslavtsev)

(by Alexander Yaroslavtsev)

Two-color SASE + XBSD combination

 $\lambda_x == \lambda_x (sase)$

Undulator mode	XBSD mode	Result	N. of pulses	N. of frequencies
λ ₁	mono	<mark>λ₁ (mono)</mark> Δt (fs÷ps) <mark>λ₁ (mono)</mark>	2	1 mono
	mono + ZOM 0 th	<mark>λ</mark> ₁ Δt (fs÷ps) <mark>λ</mark> ₁ (mono)	2	1 sase/mono
	pink	$λ_1 \Delta t (fs \div ps) λ_1$	"Interfere	ence terms"
$\lambda_1 \Delta t_1$ (fs) λ_1	mono	$λ_1$ (mono) Δt_1 (fs) $λ_1$ (mono) Δt_2 (fs÷ps) $λ_1$ (mono) Δt_1 (fs) $λ_1$ (mono)	4	1 mono
	mono + ZOM 0 th	$λ_1 \Delta t_1$ (fs) $λ_1 \Delta t_2$ (fs÷ps) $λ_1$ (mono) Δt_1 (fs) $λ_1$ (mono)	4	1 sase/mono
	pink	$λ_1 \Delta t_1$ (fs) $λ_1 \Delta t_2$ (fs÷ps) $λ_1 \Delta t_1$ (fs) $λ_1$	4	1 sase
$\lambda_1 \Delta t_1$ (fs) λ_2	mono + ZOM 1 st	<mark>λ₁ (mono)</mark> Δt ₂ (fs÷ps) λ ₂ (mono)	2	2 mono
	mono + ZOM 0 th	$λ_1 \Delta t_1$ (fs) $λ_2 \Delta t_2$ (fs÷ps) $λ_2$ (mono)	3	2 sase/mono
	pink	$λ_1 \Delta t_1$ (fs) $λ_2 \Delta t_2$ (fs÷ps) $λ_1 \Delta t_1$ (fs) $λ_2$	4	2 sase

16

Coherent Anti-Stokes Raman Scattering (CARS) Correlation Spectroscopy

Undulator mode	XBSD mode	Result	N. of pulses	N. of frequencies
λ ₁	mono	<mark>λ₁ (mono)</mark> Δt (fs÷ps) <mark>λ₁ (mono)</mark>	2	1 mono
	mono + ZOM 0 th	<mark>λ</mark> 1 Δt (fs÷ps) <mark>λ1 (mono)</mark>	2	1 sase/mono
	pink	<mark>λ</mark> ₁ Δt (fs÷ps) <mark>λ</mark> ₁	2	2 sase
<mark>λ</mark> ₁ Δt ₁ (fs) <mark>λ</mark> 1	mono	$λ_1$ (mono) Δt_1 (fs) $λ_1$ (mono) Δt_2 (fs÷ps) $λ_1$ (mono) Δt_1 (fs) $λ_1$ (mono)	4	1 mono
	mono + ZOM 0 th	$λ_1 \Delta t_1$ (fs) $λ_1 \Delta t_2$ (fs÷ps) $λ_1$ (mono) Δt_1 (fs) $λ_1$ (mono)	4	1 sase/mono
	pink	$λ_1 \Delta t_1$ (fs) $λ_1 \Delta t_2$ (fs÷ps) $λ_1 \Delta t_1$ (fs) $λ_1$	4	1 sase
<mark>λ</mark> 1Δt1 (fs) λ2	mono + ZOM 1 st	<mark>λ₁ (mono)</mark> Δt ₂ (fs÷ps) λ ₂ (mono)	2	2 mono
	mono + ZOM 0 th	$λ_1 \Delta t_1$ (fs) $λ_2 \Delta t_2$ (fs÷ps) $λ_2$ (mono)	3	2 sase/mono
	pink	$λ_1 \Delta t_1$ (fs) $λ_2 \Delta t_2$ (fs÷ps) $λ_1 \Delta t_1$ (fs) $λ_2$	4	2 sase

Coherent Anti-Stokes Raman Scattering (CARS) Correlation Spectroscopy

- Two pulses of different wavelengths are generated in the undulator Grating is tuned to monochromatize one of the pulses in 1st order reflection 0^{th} order reflection carries both SASE pulses and is recombined with ZOM Monochromatic pulse is delayed in XBSD by Δt_2
 - Story continues in talk by <u>Justine Schlappa</u> later today

European XFEL

Comparison of delay ranges

XBSD:

depends on photon energy, estimated (-7÷7 ps) up to 4 ps per single scan

Other schemes

see S.Serkez, "Design and Optimization of the Grating Monochromator for Soft X-Ray Self-Seeding FELs", doi:10.3204/DESY-THESIS-2015-043

Ongoing R&D on attosecond pulse generation

End words

Two-color scheme: robust, easy to set-up same pulse duration tunable delay, *scan possible* large max. range, up to 2500 ÷ 250 eV, independent *scan possible* for both wavelengths

XBSD:

introduces tunable delay, *scan possible* does not affect baseline focusing can create two <u>identical</u> pulses allows delivery of SASE and monochromatic pulses with a given delay (with ZOM)

Combination of the two: gives large added values, see Table

Other schemes are under active study

If you are interested- please let us know

European XFEL

20

21

Thank you

WP72, SCS, SQS,

WP78, MPY(DESY)

European XFEL