

Time-Resolved Serial Femtosecond Crystallography at Free Electron Lasers

Marius Schmidt Jan. 25, 2017

Time-Resolved Crystallography

goals

- extract kinetics and dynamics
- kinetic mechanism
- rate coefficient
- barriers of activation
 and
- molecular structures of reaction intermediates
 for
- reversible reactions

and

• *irreversible* (catalyzed) reactions

from

crystallographic data alone

Time-Resolved Crystallography Works with Difference Maps

time resolved scattering patterns

Pump-probe Mix-and-inject T-jump

• • •

difference electron density maps $\Delta \rho(x,y,z,t)$

Marius Schmidt, UWM Physics Department, m-schmidt@uwm.edu

Movie the Interpretation of the Kinetics

Schmidt et al., Acta Cryst D, 2013 assisted by singular value decomposition

330 μs pR₂

The SFX Revolution: X-ray Free Electron Lasers

40 fs X-ray pulses 10¹² photons/pulse 1 μm focal spot 9.5 keV (~1.3 Å) 120 Hz repetition

CXI instrument -

Marius Schmidt, UWM Physics Department, m-schmidt@uwm.edu

The SFX Revolution: X-ray Free Electron Lasers

Goals

- time-resolved crystallography at the X-ray FEL
- microcrystals rather than macrocrystals
- near atomic resolution
- femtosecond time resolution
- bio-medically relevant systems

Our Recent Work at Free Electron Lasers

LCLS

- I. TR-SFX with near atomic resolution LCLS beamtime LD62 Tenboer et al., 2014, Science
- II. TR-SFX with fs time resolution LCLS beamtime LG09 Pande et al., 2016, Science
- III. Mix-and-inject experiment, LCLS beamtimes LK17 and LN50 foundation of structure based enzymology, Kupitz et al., 2016, Struct. Dyn.

IV. Experiments at LCLS + SACLA

BioXFEL strategic plan

"the development and application of free-electron X-ray lasers to structural biology, with growing emphasis on time-resolved imaging"

- 1. develop nanocrystallography, including use of viscous media.
- 2. achieve *time-resolved nanocrystallography* and imaging of dynamics, on timescales from femtoseconds to seconds.
- 3. apply these methods widely to *important biological targets*.
- 4. enable the determination of structure and function without crystals using an X-ray laser.

BI

A National Science Foundation Science and Technology Center

Nano/microcrystal Injection Gas Dynamic Virtual Nozzle (GDVN)

B. Doak/J. Spence

Diffraction Patterns Special Detector, CSPAD

Difference Electron Density Maps Resolution: 1.6 Å, Delay: 1 μs, Stereo

I. The Fastest Camera in the World "in 2014 " Movie with 25 Trillion ! Pictures per Second

II. Enables Movies on Ultrafast Time-Scales

- Structural changes are small
- Low photoactivation yield with femtosecond laser pulses

(no chance with macroscopic PYP crystals)

- Exponential approach to chemical kinetics may be invalid
- *Excited state* dynamics rather than ground state dynamics
- New restraints for refining structure (no thermal equilibrium)
- QM/MM approaches for structural interpretation necessary

(computational support necessary)

complexity

Laser Excitation with 900 fs Laser Pulses

BioCARS (Moffat) 900 fs laser + UWM fast spectrometer (ANDOR)

Science and Technology Center

Second Harmonic Generation Frequency Resolved Optical Gating (SHG-FROG, J. van Thor)

- temporal pulse profile
- spatial profile not shown

Jitter: Time-Tool Needed

Reaction Initiation: Femtosecond-Laser Pump: 140 fs (450 nm blue), Probe: 40 fs X-ray

The Fastest Camera in the World fs-Laser Excitation, fs Time Delays, Resolution 1.6 Å

Time	# indexed	R-split [%]	CC*	Completeness	Multiplicity
142 fs	38606	9.01 (26.05)	0.997 (0.962)	99.92 (100)	714.75 (48.5)
269 fs	38786	9.16 (26.08)	0.997 (0.959)	100 (100)	695.25 (49.6)
455 fs	37563	9.86 (26.58)	0.996 (0.957)	99.84 (100)	637.31 (57.7)
699 fs	43617	7.53 (16.94)	0.998 (0.984)	99.92 (100)	931.65 (124.9)
799 fs	44892	7.57 (19.84)	0.998 (0.974)	99.84 (100)	961.51 (121.1)
856 fs	44470	7.61 (17.60)	0.997 (0.983)	99.92 (100)	955.96 (112.9)
915 fs	44180	7.58 (18.75)	0.998 (0.981)	99.84 (100)	927.25 (106.3)
1023 fs	45880	7.53 (17.19)	0.998 (0.978)	99.76 (100)	971.3 (123.7)
3 ps	76411	5.43 (14.36)	0.999 (0.989)	100 (100)	1685.8 (145.9)

Trans to Cis Isomerization in PYP Pande et al. Science 2016

Bio

A National Science Foundation Science and Technology Center

Trans to Cis Isomerization in PYP Pande et al. Science 2016

Marius Schmidt, UWM Physics Department

Movie: *Trans* to *Cis* Isomerization in PYP Pande et al. Science 2016

B

A National Science Foundation

Science and Technology Center

Trans to Cis Isomerization in PYP

- Torsional Dynamics

Transition Through the Conical Intersection (long sought after)

Experiment: TR-SFX

Ultimate Goal: Structural Characterization of a Reaction, from Fundamental Motions to the End ... Reached!

Born-Oppenheimer approximation _not_ valid

fs TR-SFX at Near Atomic Resolution Successful

Key Messages

- Structures from SFX are the same as those from more conventional methods
- TR-SFX works at X-ray FEL at high, near atomic resolution
- TR-SFX works with *fs* time-resolution
- structural characterization of *trans/cis* isomerizations
- electronic excited state dynamics!!!
- transition through conical intersection
- opportunity to observe laser induced damage
- optical control of reaction dynamics

III. The Holy Grail of Time-Resolved Crystallography: Single Turnover Kinetics, Mixing

III. The Holy Grail of Time-Resolved Crystallography: Single Turnover Kinetics, Mixing

L.A. Sluyterman, M. J. M. De Graaf, 1969 The activity of papain in the crystalline state Biochem Biophys Acta

The rate of conversion of dissolved substrate by a suspension of enzyme crystals is governed by the rate of diffusion and the reaction rate of the substrate inside the crystal. *If the crystal is thin enough* the diffusion is not rate limiting.

Diffusion is governed by Fick's laws in 3D Especially Fick's 2nd law is pretty illuminating and can be solved in 3D assuming certain simplifications

Calculation, Simulation, Experiment

Highly Relevant Enzyme, β-Lactamase

catalytic turnover for different substrates:

• from 10 ms to 10 min

Mix-and-Inject Experiment at LCLS/CXI LCLS beamtime LK17

substrate + stabilization buffer

new construct

spacegroup	P2 ₁ 2 ₁ 2 ₁ , orthorhombic		
unit cell [Å]	a=78 b=96 c=111		
resolution [Å]	synchrotron: 2.1 [cryo]		

Mix-and-Inject Experiment at LCLS/CXI LCLS beamtime LK17, Dec 2015

'On-the-Fly'

Summary

Time-resolved serial crystallography at the LCLS

- light to ligand triggered reactions
 PYP and β-lactamase
- small to large protein complexes
 PYP to photosystem II
- model systems to biomedically relevant
- ultrafast to slower timescales femtosecond to millisecond
- single time point to movie
- Future

crystals to single particles

movies in ultra slow motion

Our Time-Resolved Team

first authors of publications presented here

<u>J. Tenboer</u> J. Scales <u>K. Pande</u> <u>C. Kupitz</u> S. Pandey I. Poudyal A. Ourmazd L. Tremblay P. Schwander

T. Grant

L. Pollack A. Katz G. Calvey Y. Chen

Imperial College London

J. van Thor C. Hutchinson

- G. Groenhof D. Morozov J. Ihalainen
- H. Takala

K. Moffat V. Srajer R. Henning

S. Boutet A. Aquila D. Milathianaki J. Koglin M. Hunter M. Liang

- D. Deponte
- J. Robinson

Lawrence Livermore National Laboratory

G. Phillips <u>J. Olmos</u> D. Xu

BioXFEL

P. Fromme J. M-Garcia S. Basu C. Conrad J. Coe S. Roy-Chowd. R. Fromme J. Spence N. Zatsepin U. Weierstall D. Wang D. James

- D. Meza
- N. Nagaratnam

- H. Chapman M. Heyman
- D. Oberthuer
- A. Testikova
- M. Wiedorn
- J. Knoska
- O. Yefanov
- C. Gati
- A. Barty
- T. White
- M. Metz
- A. Meents
- A. Morgan
- C. Seuring