

X-ray systems layout & development strategy

4th European XFEL Users meeting Hamburg, Jan 26/27, 2010

> Thomas Tschentscher thomas.tschentscher@xfel.eu

- Recent developments
 - Instrument workshops (Oct '08 Dec '09)
 - Start of LCLS operation
- Development strategy
 - Start of operation (2015)
 - Longterm
- Conclusions

European

FEL Outline

5 Photon diagnostics5 Photon beamline10 Instruments

Infrastructure for scientific instruments

- 3 2D area detectors
- optical laser systems
- sample environment R&D
- special instruments
- preparation & characterization labs.

3 FEL undulator systems
3 Photon diagnostics
3 Photon beamline
6 Prioritized instruments

Infrastructure for scientific instruments

reductions in numbers and R&D

X-ray systems layout & development strategy

European

XFEL Scientific instruments

XFEL Instrument workshops

6 workshops for 6 instruments

- Small Quantum Systems (SQS), U Aarhus, 29-31 Oct 2008
- Single Particle and Biomolecules (SPB), U Uppsala, 20-22 Nov 2008
- High Energy Density science (HED), U Oxford, 30 Mar 1 Apr 2009
- Spectroscopy & Coherent Scattering (SCS), SLS, Villigen, 2-4 Jun 2009
- Materials Imaging and Dynamics (MID), ESRF, Grenoble, 28/29 Oct 2009
- Femtosecond X-ray Experiments (FXE), KFKI, Budapest, 9 11 Dec 2009

Input from wide community

- Attendence of more than 450 scientists from ~20 countries
- Discussion of science driven requirements to x-ray delivery and instrumentation of the end-stations
- Workshop reports and summary of all meetings are in progress

Thomas Tschentscher, European XFEL, 4th European XFEL Users Meeting, 27 Jan 2010

XFEL User requests for X-ray delivery

		Photon energy [keV]	Tuna- bility	Polariza- tion	Beam size [µm]	BW	Rep.rate	OL-PP/ X-PP
SASE 1 SAS	SPB	~6 (?) – 12	-	-	0.1, 2, 5, unfocus.	nat.	~MHz	Yes (2x)/ No
	MID	~6 – 12(5), ~25	-	Vertical linear	1, 10, 25, unfocus.	nat., 10 ^{-₄} , 10 ⁻⁵	4.5 MHz	Yes/Yes
	FXE	~4 - 18	±3%	Linear	10, 100, line, unf.	nat.,10 ⁻⁴	4.5 MHz	Yes/ No
SE 2	HED	4 - 20	±3%	Linear	1,3,10,100 unfocus.	nat 10 ⁻⁶	10 Hz (+)	Yes/Yes
SAS	SQS	~0.28 – 3	±3%	Variable	1, 100 unfocus.	nat.	4.5 MHz	Yes/Yes
SE 3	SCS	~0.28 – 2	±3%	Variable	1,10,100 unfocus.	3×10⁻⁵	0.03-1 MHz	Yes/Yes
Extend range				Variable	Several foci	Very high		Various x-ray
towards soft & hard			r d j	polarization	in 1 location	resolution		split&delay
is needed								
(soft x-rays)								

Thomas Tschentscher, European XFEL, 4th European XFEL Users Meeting, 27 Jan 2010

Thomas Tschentscher, European XFEL, 4th European XFEL Users Meeting, 27 Jan 2010

9

XFEL Expectations following LCLS start

At instrumentation workshops fairly general assumptions were made

Photon numbers	10 ¹² (hard x-rays) to 10 ¹⁴ (soft x-rays)			
Pulse duration	few femtoseconds to 100s of femtoseconds			
Synchronisation	better 10 fs			
Overall time resolution	<10 fs			
Stability	positional <10 %			
	spectral <<0.1 %			
	temporal <100 fs			
	coherence properties <10%			
Tuning times	few minutes (max.)			

Extrapolate this performance to high repetition rates

- Benefits
- Challenges

XFEL Scientific applications and high repetition rates

Requirement of high peak brilliance

- scattering strength, e.g. to observe single-pulse diffraction pattern
- non-linear or multi-photon excitation

Requirement of high average brilliance

- collection of significant number of events
- ultra-dilute samples : extremely small number of scatterers per IA volume

Example: 3D structures by single particle coherent diffraction imaging

 $10^5 - 10^7$ patterns req. for 3D reconstruction \Rightarrow high average brilliance

11

XFEL Challenges using high repetition rates

Particle flight time (ions, electrons)

- Using time-of-flight detectors requires to uniquely define the time scale. While electrons are fast and likely enable MHz pulse rates, for ions the typical flight times are (many) microseconds.
 - → A limitation in repetition rate to ~20/50 100 kHz for ion TOF measurements

Sample excitation due to x-ray or optical laser

- Stroboscopic pump-probe experiments are generally limited in usable repetition rate by decay of the sample system (excited by opt. laser, FEL or other means).
- Decay can easily take up to few 100 ns (\Rightarrow 1 MHz) or even up to μ s (\Rightarrow 100 kHz).

Sample damage due to intense x-ray

- Usually not a problem for x-ray science, but full intensity FEL pulses can interact strongly, in particular when focussed.
- Sample damage will make exchange before arrival of the next pulse necessary. Currently laser facilities move from sub-Hz to the 1 – 10 Hz regime ! This could turn into general limitation for FEL experiments on solids (and certainly for >kHz).

XFEL European XFEL time structure

Possible European XFEL delivery patterns

- operate sc-accelerator in almost steady-state mode
- division of bunchtrain into functional portions :
 - → intra-train feedback → stabilization (\underline{x} , t, E)
 - → two sub-trains going to two e⁻ beam lines

time pattern for each beam line can be determined by experiment

- → single pulses
- → medium repetition rate (10 100 kHz)
- → high repetition rates (0.1 \rightarrow 1 \rightarrow 4.5 MHz)
- → special fills
 - logarithmic distribution
 - shorter distances (~700 ps 200 ns)

SPB

SQS SCS

e

MID

Boxes only placeholders !

XFEL Development strategy I (Start of operation 2015)

Goals

- optimize to generate state-of-the-art (in 2015!) multi-user facility
 - → recognize and react to user requests
 - investigate and react to LCLS results
- retain flexibility as to further external and internal inputs and ideas
- A. Confirm "Burst Mode" operation for the European XFEL
 - Make the most out of this operation mode !
- **B.** Take advantage of lower emittance results
 - Optimize parameters; refine working point
- **C.** Incorporate emerging user requests
 - Adapt to user request; improve user facility aspect

EL Confirm "Burst Mode" operation for the European XFEL

- Provide maximum number of pulses per second
- Distribute pulses efficiently to many users quasi in parallel
- Cater for variable time patterns for the different undulator beam lines
- Develop schemes to maximize user throughput

⇒ Push

European

- Fast bunch distribution schemes
- X-ray optics R&D
- Sample environment technologies
- 2D detector developments and DAQ/Data Management
- Triggering capabilities ("event selection")
- Analysis procedures of vast amount of data
- Laser development

XFEL Push burst mode: X-ray optics

High repetition rate corresponds to high average power

- Extreme flatness mirrors
 - → Si bulk, diamond coating, 300 K, 3000 pulses/600 µs, 12 keV
 - Heat bump of ~1.4 nm
 - → Si bulk , diamond coating, 150 K, 3000 pulses/600 µs, 0.2 keV
 - Heat bump of ~2 nm
- Monochromators
 - → Thin diamond in Laue geometry
 - → Expand x-ray beam
 - Si possible (∆T~15 K)

XFEL Push burst mode: 2D detectors & DAQ/DM

2D detector developments for "burst mode" capability

- three developments with world experts ongoing since 2007
- **no principal show stoppers found (\rightarrowDetector Advisory Committee)**
- pixel size and frame storage are interconnected
 - minimum pixel size ~200 μm
 - → number of frames per train that can be stored limited (~ $200 \rightarrow 500 \rightarrow 1000$)
 - → invoke "triggering" strategies (reject "empty" or "bad" events)

DAQ & Data mangement strategies

- High frame rates
- Large storage volume
- Data utilisation strategies

XFEL Push burst mode: Optical laser development

Experiments high repetition rate laser systems with 0.1 – 4.5 Mhz

- >1 mJ pulse energy requested for several applications (some trade-off possible between rep.rate and pulse energy)
- Few fs pulse duration & overall time-resolution <10 fs</p>
- Proof of concept
 - → 100 kHz, ~65 µJ, <8 fs (Optics Lett. accepted)

Increase pump power

Collaboration: DESY Uni Jena ILT Aachen European XFEL

Thomas Tschentscher, European XFEL, 4th European XFEL Users Meeting, 27 Jan 2010

XFEL Take advantage of lower emittance results

New, improved FEL scenarios become possible

- Undulators allow for saturation at 20-25 keV photon energy (talk RB)
- Self-seeding could replace high res. monochromators

European

XFEL Incorporate emerging user requests

- Adjust photon wavelength ranges of SASE1 to SASE3 (lower E_{ph})
- (Re)introduce variable polarization for SASE3 (using freed funds)*
- **Refine layout of instruments**
 - Main applications
 - Instrumentation needs
 - → Special x-ray optics
 - → Detectors (number, smaller pixel, 1D, X-ray streak camera)
 - → Lasers
 - → Sample delivery & environment
 - Identify facility vs. user contributions to instruments

XFEL Development strategy I (Start of operation 2015)

Goals

- optimize to generate state-of-the-art (in 2015!) multi-user facility
 - → recognize and react to user requests
 - investigate and react to LCLS results
- retain flexibility as to further external and internal inputs and ideas
- A. Confirm "Burst Mode" operation for the European XFEL
 - Make the most out of this operation mode !
- **B.** Take advantage of lower emittance results
 - Optimize parameters; refine working point
- **C.** Incorporate emerging user requests
 - Adapt to user request; improve user facility aspect

XFEL Development strategy II (Longterm)

Fill the remaining tunnels and instrument areas ($\rightarrow \in$...)

- U1, U2, SASE3*, SASE4?
- 6 \rightarrow 10 \rightarrow 15 instruments

Investigate CW mode of operation (see talk R. Brinkmann)

- European XFEL is the only machine existing where such a switch is possible within "reasonable" costs
- Continue participation in R&D on a limited scale (DESY)
- Would need considerable additional resources
- Decision not before 2015

XFEL Conclusions

European XFEL is in the process of refining the

- x-ray beam delivery
- Scientific instruments
- First series of instrumentation workshops 2008/09
- LCLS results confirm x-ray FELs and promise improved performance
- Strategy for start of operation (2015) and longterm established
- Proceed with layout and first conceptual designs

Thank you for your attention & for very valuable input