

Accelerator achievements and strategy

R. Brinkmann

User meeting January 27, 2010 R. Brinkmann, DESY

XFEL Consortium participation – total volume ~500 MEUR

Accelerator achievements and strategy

European

XFEL Work package structure – accelerator complex

User meeting January 27, 2010 R. Brinkmann, DESY

s.c. cavities

DESY

INFN/Milano

Soltan Inst/Swierk

European

European XFEL

_ RF-coupler procurement & processing at IN2P3-LAL/Orsay

Conditioning rate of **8 couplers per week**.

Schedule integrated in overall project schedule.

Direct delivery to assembly site at CE Saclay.

Accelerator achievements and strategy

European

XFEL String & module assembly at IRFU-CEA/Saclay

- Vibration/shock-damped transport frame developed in industry
- After truck transport to Saclay, back on CMTB for RF test:
 - No mechanical damage, no vacuum leaks
 - Cool-down and RF-powering without problems

User meeting January 27, 2010 R. Brinkmann, DESY

European

XFEL Refurbished DESY Clean Room

Increased ISO4
 assembly area

 Chemistry and ultra
 sound infrastructure now in
 ISO6/5 instead of ISO7/6

 New rotational clean
 room airlock

 Reduced power
 consumption

DESY will be able to handle (few exceptional) performance "problem cases" of cavities and modules from series production

XFEL XFEL Accelerator Module Prototypes

Institute of High Energy Physics Chinese Academy of Sciences

THALES

XFEL PXFEL1 - The *Chinese* Module at CMTB

The accelerator module PXFEL1 was conditioned and tested at the Cryo-Module Test Bench (CMTB).

The average maximum gradient is **32.5 MV/m.**

After string and module installation we have seen a **gradient reduction of only 5%.**

PXFEL1 will be installed at FLASH and can be operated there with an average gradient of 30 MV/m.

The XFEL waveguide distribution will be used.

XFEL RF system R&D and industrialization

- Modulator and interlock system developments in Zeuthen
- Very good test results for prototype from industry
- Klystron prototype tests in Hamburg
- Three companies qualified for series production

European **XFEL**

Installation tests in the mock-up tunnel

- Smaller version with 4 cavities built at FNAL in collaboration with DESY
- Installed at FLASH after successful test with RF
- Invaluable experience for XFEL

User meeting January 27, 2010 R. Brinkmann, DESY

Comparison of machine parameters

		XFEL	ILC	FLASH design	9mA studie s
Bunch charge	nC	1	3.2	1	3
Bunch rate	MHz	5	2.7	9	3
#bunches		3250	2625	7200	2400
Pulse length	μs	650	970	800	800
Current	mA	5	9	9	9

Nominal experiment setup

- •3nC/bunch
- •Bunch rates: 40kHz 3MHz
- •RF systems operating 'on crest'
- •BC magnets on, but no compression
- •Beam through Bypass line to dump
- •RF gun: 1.5 cell warm PC gun
- ACC1: 8 SC cavities
- •ACC23: 2x 8 SC cavities
- •ACC456: 3x 8 SC cavities
- •LLRF: digital I/Q control of VS
- •Piezo tuners: ACC3, ACC5, ACC6

19

XFEL Accelerator Module Test Facility (AMTF)

User meeting January 27, 2010 R. Brinkmann, DESY

XFEL AMTF civil construction

Start of construction

Laying of foundation stone July 21, 2009

The hall a few weeks ago

work

Accelerator achievements and strategy

XFEL S.c. magnets

- Cryostat etc. completed and ready for testing the 100 s.c. quads for the XFEL linac
- 3 quad prototypes delivered by CIEMAT and test programme has started

CIEMAT fabrication

DESY test facility INP Cracow manpower test

21

XFEL Injector R&D: PITZ at DESY in Zeuthen

August 2007: $\epsilon_{x,n} = 1.25 \pm 0.19 \text{ mm mrad}$ $\epsilon_{y,n} = 1.27 \pm 0.18 \text{ mm mrad}$ for 100 % RMS emittance !

Cut of large-amplitude tails:

For 90% RMS →

 $\epsilon_{x, y, n} \approx 0.9 \text{ mm mrad}$

XFEL Continued R&D at PITZ: new laser, low charge, ...

Laser pulse "synthesizer": 13 pulses with 2ps rise/fall time overlapped, individually adjustable (built by MBI, Berlin)

Emittance at 0.25nC comparable to LCLS

XFEL Injector section

R. Brinkmann, DESY

3rd compression stage at low energy (BC-0) added and 3rd harmonic system moved to position after injector module (at 150 instead of 500 MeV)

Space for two injectors in separate shielded enclosures – can be installed & operated independently

 FEL gain can be suppressed if bunch is kicked from axis (e.g. using fast feedback kicker)

undulator section 1

Fast kicker + DC magnet can select which bunches "lase" in which undulator section ad libitum

undulator section 2

- can be used for subsequent undulator beam lines or within one undulator (e.g. 1st and 2nd half of SASE2) → two (or more) –color schemes with adjustable delay
- Many more ideas for beyond-baseline options of the XFEL facility!

27

XFEL Accelerator schedule (very coarse!)

	y2009	y2010	y2011	y2012	y2013	y2014	y2015
Injector complex							
Civil construction							
Infrastructure Installation							
Machine Installation							
Commissioning First beam							
T list beam						\smile	
LINAC							<mark>nts</mark>
Civil construction							Del
Infrastructure installation							Brin
Machine installation							d d
Commissioning							e
Flist beam							<mark>rst</mark>
Accelerator components							fi
Prototyping							
Production (start=placing order)							
Test facility							
Civil construction							
Installation							
Operation							

XFEL Strategy

- Most remarkably fast & successful start-up of LCLS has triggered some discussions regarding European XFEL
 - Perhaps too conservative assumptions on beam quality/safety margins
 - Very low charge/short bunch options
 - Higher duty cycle (up to CW?)
- Flexibility has been built into XFEL design and options within certain range have been considered in the past – new ideas still emerge
- Lower emittance makes shorter wavelength immediately accessible without any changes to the machine (simply open SASE1 undulator gap) – two (or more) color modes become attractive as well
- Cost saving (shorter linac) is a possibility (and perhaps necessity) to some extent – without unacceptably compromising the scientific potential of the facility

29

XFEL Saturation length vs. beam emittance

- Wavelength well below 0.1nm (e.g. 0.05nm) accessible (just open undulator gap)
 → layout of photon beam transport!
- Undulators could be shorter, cost reduction or:
 - Two (or more) color modes possible + further options

XFEL Peak brilliance & transverse coherence vs beam energy

Accelerator achievements and strategy

■ → significant loss of # coherent photons/pulse if beam energy is strongly reduced

(calculation using parametrization of numerical studies by Saldin, Schneidmiller, Yurkov)

XFEL Strategy

- With realistic assumptions on lower beam emittance, linac energy reduction by 20% to 14 GeV appears as a reasonable compromise between cost aspects and scientific potential of the facility
- Many ideas for a most flexible use of the facility have already emerged and more will come – the layout has plenty of room to accommodate such options!
- CW mode remains an interesting future option, but:
 Not technically ready yet (injector, CW tests of modules + RF system necessary, considerations of cryo upgrade/lower T,...)
 Not the optimum for *all* experiments: more uniform time structure has to be traded against loss in coherent photons per pulse
- If CW mode is realized, should go along with re-establishing the full (TDR) linac length to permit ~7GeV

The end

