

Wir schaffen Wissen – heute für morgen

Feasibility considerations for stimulated Raman scattering at an XFEL

Bruce Patterson

- Motivation
- Third-order susceptibility at X-ray wavelengths
- Spontaneous vs. stimulated X-ray Raman scattering
- Experimental considerations

RIXS at a synchrotron

- elemental (and chemical) specificity
- unrestricted by dipole selection rules (d-d)
- near L-edges (2p-3d): sensitive to valence, orbitals and spin
- in correlated electron materials:

charge-transfer, crystal field, collective excitations

• photon-in / photon-out:

bulk sensitive, ok in E and B fields

but:

- photon hungry (dispersive detector)
- precludes time-resolved expts

RIXS in correlated electron materials

J Schlappa, et al, PRL 2009

PAUL SCHERRER INSTITUT

Collective Magnetic Excitations in the Spin Ladder Sr₁₄Cu₂₄O₄₁ Measured Using High-Resolution Resonant Inelastic X-Ray Scattering

JP Hill, et al, PRL 2008

Both processes governed by 3rd-order NL susceptibility $\chi^{(3)}$.

$$P(t) = \varepsilon_0 \Big[\chi^{(1)} E(t) + \chi^{(2)} E^2(t) + \chi^{(3)} E^3(t) + \cdots \Big]$$

= $P^{(1)}(t) + P^{(2)}(t) + P^{(3)}(t) + \cdots$
= $-Ne \ x(t)$

$$P^{(s)}(\omega_k) = \varepsilon_0 \chi^{(s)}(\omega_k = \pm \omega_1 \pm \omega_2 \cdots \pm \omega_s) E(\pm \omega_1) E(\pm \omega_2) \cdots E(\pm \omega_s)$$

Raman scattering (spontaneous or stimulated) governed by:

$$\chi^{(3)}(\omega_2 = \omega_2 + \omega_1 - \omega_1)$$

v = anharmonicity parameter

$$\chi^{(3)} \left(\omega_{2} = \omega_{2} + \omega_{1} - \omega_{1} \right) = \frac{3Ne^{4}}{8\varepsilon_{0}m^{3}r_{a}^{2}} \frac{\omega_{0}^{2}}{\left| \omega_{1}^{2} - \omega_{0}^{2} - 2i\gamma\omega_{1} \right|^{2} \left(\omega_{2}^{2} - \omega_{0}^{2} - 2i\gamma\omega_{1} \right)^{2}}$$

$$\gamma, \omega_1, \omega_2 \ll \omega_0; \hbar \omega_0 = 4.6 \ eV; N = 4 \times 10^{22} \ cm^{-3}; r_a = 3 \ \text{\AA}$$

$$\chi_{nr,opt}^{(3)} \approx \frac{Ne^4}{\varepsilon_0 m^3 r_a^2 \omega_0^6} = 0.3 \times 10^{-21} m^2 / V^2$$

experiment:

$$\chi_{nr,opt}^{(3)} (Al_2O_3) = 0.21 \times 10^{-21} m^2 / V^2$$

(diamond) = $1.8 \times 10^{-21} m^2 / V^2$
(CdS) = $98 \times 10^{-21} m^2 / V^2$

$$\omega_1 = \omega_0 = \omega_2 + \Omega; \gamma \approx \Omega \ll \omega_0; \ \hbar \gamma = 1 \ eV$$

$$\chi_{res,X-ray}^{(3)} / N \approx \frac{e^4}{8\varepsilon_0 m^3 r_a^2 \omega_0^2 \gamma^4}$$

compare with "serious theory":

atom	r _a	$\hbar \omega_0$	$\chi_{res, X-ray}/N$	literature	
	(Å)	(eV)	(10-35 esu/atom)	value	
He	0.31	20.6	232	460 [Fill,1996]	$1^1 S_0 \rightarrow 2^1 S_0$
С	0.7	277	0.25	35 [Tanaka,2002]	$1s \rightarrow 2p$

Note:

$$\chi^{(3)}_{nr,opt} \approx \chi^{(3)}_{res,X-ray}$$

Classical free electron

include Lorentz force

Lee and Albrecht, 1985:

$$\frac{d^2 \sigma_{stim}}{d\Omega_2 d\omega_2} = \frac{32\pi^2 \hbar \omega_1 \omega_2}{\varepsilon_0 c^2} F(\omega_2) \operatorname{Im}(\chi^{(3)}) / N$$
$$F(\omega_2) = \frac{F(\omega_2)}{\varepsilon_0 c^2} F(\omega_2) \operatorname{Im}(\chi^{(3)}) / N$$

Obtain the spontaneous case by setting
$$F = F_{bb\ zero-point} = \frac{\omega_2^2}{32\pi^3 c^2}$$

$$\frac{d^2 \sigma_{spon}}{d\Omega_2 d\omega_2} = \frac{\hbar \omega_1 \omega_2^3}{\pi \varepsilon_0 c^4} \operatorname{Im}(\chi^{(3)}) / N$$

This corresponds to 4 x 10⁹ photons (277 eV, 100 fs pulse, 0.5% bandwidth, (100 μ m)² focus).

XFEL delivers 10¹² !

Bloembergen, 1967:

... the stimulated effect will only be comparable to or larger than the spontaneous emission if the number of incident photons is so large that it exceeds the number of vacuum electromagnetic modes contained in the frequency interval of the linewidth.

Planck, 1911:

The black-body zero-point energy represents 1/2 photon per radiation mode.

Lengeler, 2001:

The number of photons/mode emitted by a source is given by the *degeneracy parameter* δ .

source	photon energy	δ
Hg lamp	4.9 eV	3×10^{-3}
synchrotron undulator	6.4 keV	2×10^{-3}
He-Ne laser	1.96 eV	2×10^{7}
XFEL	6.4 keV	2×10^{9}

Use X-ray as a pump:

Devir and Bauer, 1978; Maier, et al, 1969:

rate of change of ground-state population:

$$\frac{\partial \Delta}{\Delta} = \frac{-32\pi^2 c^2 I_1 I_2 \tau}{\hbar^2 c^3 \omega_2^4 \gamma} \left(\frac{d\sigma_{spon}}{d\Omega_2} \right)$$
$$\approx \frac{-32\pi I_1 I_2 \tau}{\varepsilon_0 \hbar c^2} \operatorname{Im} \left(\frac{\chi^{(3)}}{N} \right)$$

Carbon (277 eV, 20 fs pulse):

$$\frac{\partial \Delta}{\Delta}$$
 = -1 for I_1 = I_2 = 30 MW
XFEL delivers 10 GW !

X-ray pump – X-ray probe:

t-CARS : 4-wave mixing technique (also governed by $\chi^{(3)}$)

→ t-resolved spectroscopy on superpositon of excited states

Supply ω_1 and ω_2 in a single pulse:

Minimum time-bandwidth product for a (Gaussian) pulse:

$$(\Delta E \cdot \tau)_{\min} = \hbar \Delta \omega_{FWHM} \tau_{FWHM} = 8\hbar \ln 2 = 3.65 \text{ eV fs}$$

One sufficiently short XFEL pulse: delivers *both* frequencies required for stimulated Raman.

X-ray Transient Grating Spectroscopy

"Smart" (q-selective) pump:

"Colliding" pump pulses \rightarrow standing wave of excitation with given ω and q.

Transient grating queried by later probe pulse.

Examples of soft and hard XTGS experiments

soft

hard

Multi-magnon excitations in La_{2-x}Sr_xCuO₄ at the Cu K edge (9 keV) [Hill, 2008]

thin Si crystals (30 μ m) (*T* = 75%) overall split-delay [Rosecker, 2009]: *T* = 1%

Need 2-color pulses – to differentiate pump and probe.

 Stimulated Raman: similar information as RIXS, with higher efficiency and t-resolution.

• $\chi^{(3)}$: estimated with classical models. Comparable values for non-resonant optical and resonant X-ray.

 Spontanteous Raman: stimulated by the bb zero-point field. At high degeneracy parameter, *stimulated* effect dominates. Efficient pumping to low-lying excited states.

X-ray pump / X-ray probe analogs of t-CARS and TGS: promising possibilities at a (2-color) XFEL?

D Bethune (IBM Amalden) S Doniach, Z-X Shen (Stanford) S Mukamel (Irvine) A Belkacem, Z Hussain, W McCurdy (LBNL) K Nelson (MIT) **SLAC:** 20.5 - 6.9.10

U Bergmann J Feldkamp Y Feng H Ihee M Rowen

J Hastings

Thank you for your attention.

