

Imaging Stations for Invasive Photon Diagnostics at the European XFEL

XFEL User Meeting Photon Diagnostics Satellite Cigdem Ozkan 26th Jan 2012

- Imaging stations for photon beam diagnostics located between electron beam separation and experimental hall, for the three Undulator beamlines: SASE1, SASE 2 & SASE3
- Reliably measure the beam profiles → establish, diagnose & optimize lasing

XFEL Types of Imaging Stations

3

- Imaging of two types of radiation:
 - Spontaneous Radiation (SR)
 - Undulator gap adjustment and phase tuning with the Undulator Commissioning Spectrometer (K-monochromator)
 - Trajectory alignment
 - SASE Radiation
 - → Beamline Commissioning and maintenance → align optical elements, readjustment of optical elements
- Three types of Imaging Stations:
 - Transmissive Imager
 - 2D-Imager
 - Pop-in Monitors
- Based on optical imaging of an X-ray scintillation material
- Aim of high spatial resolution
- Simultaneous use of <u>at least 2</u> Imaging Stations
- Total number of stations: 19

January 24th, 2012 C. Ozkan, WP74 – Photon Diagnostics, XFEL.EU N. Kohlstrunk, X-ray Beam Layout, EDMS Nr.: 2278111, Release: 29 Aug 2011

- First ever device downstream of Undulators to "see" beam
- Aid in measuring beam pointing
- Not transmissive in SASE3 energy range
- Requirements:
 - Scintillator has to be radiation hard and thin enough to transmit a fraction of the beam
 - Camera and optics need to be shielded to avoid radiation damage
 - Must operate at the bunch repetition rate of 10Hz
 - Statistics required from the images acquired: center-of-mass, intensity, width for a Region-Of-Interest
 - Possibility of image/data storage

European XFEL 2D-Imager

- Capturing 2D beam profile:
 - Check the functionality of any upstream beamline components
 - Aid in commissioning of the Undulators
 - Visualization of the initial lasing after first time of establishing SASE
- Requirements:
 - SR vs FEL visualization
 - → Two Field-of-Views
 - Two types of scintillators (different materials & thicknesses)
 - Two cameras
 - low-light level capability for SR
 - high dynamic range for FEL
 - Function at the bunch repetition rate of 10Hz
 - Algorithms to extract parameters for Undulator commissioning
 - Possibility of image/data storage

XFEL Pop-in Monitors

- Alignment and re-adjustments of optical elements:
 - Offset mirrors
 - Distribution mirrors
 - Hard X-ray monochromators (SASE1/2)
 - Soft X-ray monochromator (SASE3)
- Requirements:
 - Flexibility in motion where beam displacements are expected
 - High resolution spatial imaging required
 - Function at the bunch repetition rate of 10Hz
 - Statistics required from the images acquired: center-of-mass, intensity, width for a Region-Of-Interest
 - Possibility of image/data storage

XFEL Pop-in Monitors (mirrors)

8

- Offset mirrors
 - Horizontal deflection range:
 - → 25-57mm SASE1/2
 - → 35-125mm SASE3

A. Trapp, *Transverse and angular motion, tolerances, resolution calculations,* August 2011

- Distribution mirrors
 - Horizontal deflection range:
 - → max ~46mm SASE1/2
 - → max ~100mm SASE3

XFEL Pop-in Monitors (monochromators)

- Before and after Hard X-ray monochromators
 - Artificial channel-cut crystal
 - Vertical deflection: 9.7-19.3mm
 - Motion to additionally account for vertical deflection is required for downstream pop-in

H. Sinn et. al., Conceptual Design Report X-ray Optics and Beam Transport, http://edmsdirect.desy.de/edmsdirect/file.jsp?edmsid=2081421

- Soft X-ray monochromator
 - Imager located downstream → chose spectral mode
 - Horizontal and vertical deflections: TBD

Final design has to accommodate beam deflection

XFEL Main Components

- Chamber
 - On linear adjustment stages
- Scintillator screens
 - Calibration screen
 - On-axis screen
 - Redundancy screen
- Mirrors
 - Quality: optical grade
 - Reflectivity: > 95% @ 45° incidence, in broad spectrum
 - Viewing aperture matches size of scintillator screen
 - Thickness: suitable for >50% transmission for X-ray energies >5keV
- Cameras
- Optics

XFEL Scintillator Screens

- Choice depends on:
 - Light Yield
 - Emission wavelength
 - Effect of material on achievable spatial resolution
 - Survival: Number of pulses

Scintillator Candidates	Density (g/cm³)	Emission Wavelength	Decay time (ns)	Index of Refraction	Light Yield	Intended Imager
YAG:Ce	4.55	550nm	70	1.82	35 ph/keV	2D Imager (SR,FEL), Transmissive, Pop-in
LuAG:Ce	6.73	535nm	70	1.84	28 ph/keV	2D Imager (SR)
LYSO	7.30	375nm	41	1.81	32 ph/keV	2D Imager (SR)
BGO	7.13	480nm	300	2.15	8-10 ph/keV	2D Imager (SR)
Boron doped pc-CVD Diamond	3.515	550-700nm	<u> </u>	2.41	-	Transmissive (FEL), Pop-in

Does not match QE of most cameras

Low yield for SR is not good!

XFEL Scintillator Screens - Resolution

- Scintillator parameters affecting resolution:
 - Material
 - Thickness
 - Observation geometry (variation of scintillator-beam angle and camera-beam angle)
- Experiments with electron beam comparison of spatial resolution obtained from images of illuminating
 - BGO, YAG, LYSO, PWO
 - Resolution of YAG > LYSO

*G. Kube et. al., Resolution studies of inorganic scintillation screens for high energetic and high brilliant electron beams, presentation Workshop of Scintillating Screen Applications

XFEL Scintillator Screens - Damage

Melt thresholds:

	Material Properties			Absorbed charge, 2 1mJ puls	2 - Marine			
	Heat Capacity	Thermal Conduct.	W _{melt} (eV/atom)	7.75keV	12.4keV	20.7keV	3.1keV	
	(J/g/K)	(W/cm/K)		4 75 6 4	4 0 5 0 5		4 45 0	
Diamond	0.502	15	1	1.7E-04	4.3E-05	1.9E-05	1.4E-3	
YAG	0.59	0.13	0.57	1.4E-01	3.7E-02	7.8E-02	0.8	
LYSO	0.31	0.036	0.6	9.8E-01	1.2	4.8E-01	5	~
LuAG	0.411	0.096	0.59	4.2E-01	5.E-01	1.9E-01	2.1	
BGO	0.040	0.02	0.34	6.6E-01	3.E-01	3.4E-01	3.7	

Number of shots survival:

Number of pulses	3.1keV	7.75keV	12.4keV	20.7keV	0.28keV
Diamond	88	Whole train	Whole train	Whole train	85
YAG	5	31	181	70	4
LYSO	2	7	6	15	3
LuAG	3	10	8	22	4
BGO	0	0	1	1	0

Diamond is the optimal candidate for FEL imaging

Single-shot mode for FEL imaging

- Resolution Requirements:
 - To resolve position jitter of 0.1σ → Settle on resolution of 0.05σ → best case resolution: 6-7µm
 - Expected beam drift in <u>a day</u> *:
 - → 7-10µm at Undulator, 30-40µm at first mirrors, 40-50µm at distribution, ~100µm at experimental hall
 - Additional requirements: reproducibility of scintillator positioning
- Large format lens design with an extended depth-of-field & short Working Distance (WD)
 - Two FOVs
 - → SR imaging: 30x30mm²
 - → FEL imaging: 20x20mm²
 - Corresponding Sensor sizes
 - → 2500x2200 pixels for SR
 - → 1600x1200 pixels for FEL
 - Zoom optics for Pop-in Monitors
 - WD = 86-160mm
- Detailed info in CDR (under review)

- Requirements:
 - Have to deliver images at machine repetition rate (10Hz)
 - High sensitivity
 - Large dynamic range
 - Low noise
 - External trigger
- h/w and s/w compatibility with DAQ&Control system
- Built-in cooling system preferable for performance stability
- Commercial products based on visible light CCD or CMOS sensors

Given one or more imaging stations, in collaboration with WP76:

- Synchronization of cameras with train arrivals (XFEL.EU timing system)
- Controlling the cameras (h/w & s/w)
- Control of motors and other mechanical pieces via Beckhoff Controls:
 - Motors movement of screen holder
 - Limit switches screen stage safety
 - Environmental sensors camera cooling
 - Camera power cycle power
- Processing and storing of camera images
- Visualization of image and control data

XFEL Control/DAQ concept

- Processing algorithms will be implemented in a modular way
- Simple image analysis/manipulation tasks can be done online (must match the 10Hz frame rate)
- Time-consuming tasks \rightarrow Offline beyond the initial storage point in the pipeline
- Images may be visualized at a lower frame rate (and/or lower resolution)

Offline

XFEL Conclusions

- Building prototype this year
- Scintillator choice
 - YAG:Ce and/or LuAG for SR
 - YAG:Ce and B-doped pc-CVD Diamond for FEL
- Commercial cameras have been tested and integrated into software for image capture, external trigger functionality.
- Further investigation into:
 - Scintillator screen damage threshold in XFEL.EU energy range due to
 - high-energy SR background
 - → FEL beam
 - Suitable mirrors (flatness, damage concerns) OR
 - Changing observation geometry (related mechanical design limitations)

XFEL Acknowledgements

20

XFEL.EU

- **WP74**
- WP73: H. Sinn, J. Gaudin, A. Trapp, L. Samoylova
- WP71: S. Karabekyan, Y. Li
- WP72: G. Geloni, I. Agapov
- WP76: C. Youngman, B. Heisen, N. Coppola, P. Gessler
- T. Haas
- S. Molodtsov, T. Tschentcher

DESY

- M. Degenhardt
- R. Treusch
- M. Sprung
- G. Kube, M. Yan, D. Noelle

PITZ

- Y. Ivanisenko
- G. Vaschenko

Thank you for your attention!!!