

SPring

Status of SACLA at SPring-8

Tetsuya Ishikawa

On behalf of the SACLA team

RIKEN Harima Institute Sayo, Hyogo 679-5148, Japan ishikawa@spring8.or.jp

26 January 2012 @ European XFEL Users' Meeting

SACLA

(SPring-8 Angstrom Compact free electron LAser)

X-Ray Free Electron Laser with 8 GeV electron Liniac With 700 m length with experimental building Completed in March 2011 Open for public users both domestic and internationa

Cherry Blossoms = SAKURA SACEA ?

"X-ray Free Electron Laser, XFEL" coherent light to explore nano-world

SACLA System

The world's first compact XFEL based on in-vacuum UNDs having the following features;

Japan's XFEL: SPring-8 Compact SASE Source (SCSS) Concept

Road Map

SACLA has delivered Laser Light

SACLA RIKEN

Announcement SACLA Lased

 OH_SCM3LIveView

 Ele profile mage your Snap Snap Qata Becord

 400

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

At 16:10 on June 7 2011, we accomplished "Lasing" with SACLA, our newest X-Ray Free Electror Construction of SACLA began in 2006 as part of Japan's Key Technology of National Importance We appreciate your support in helping us to achieve this milestone. We will do our best to live up

Achieved Performance (I) as of July 2011

Present Result Summary w/o Laser Heater

Quick beam commissioning (~3 months to the lasing) with a newly constructed machine Maximum laser power

~4 GW

Lasing wavelength range

0.8 ~ 1.6 Å

Laser being reproducible

w/o beam FB keeping the peak current

at 60~70% of peak intensity

Shortening of Laser Wavelengths

Achieved Performance (III) as of July 2011

Achieved Performance (IV) as of July 2011

Achieved Performance (V) as of July 2011

Laser Spatial Profile after Monochromatization

Photon energy: 10 keV 110 m from the exit of ID18

Si(111) DCM covering photon energy range from 4 to 30 keV

Undulator Performance

XFEL Undulator Main Parameters

Magnet Structure	Hybrid Type
Material	NdFeB
Length (m)	5
Period Length (mm)	18
Number of Periods	277
Number of Undulators	18
Minimum Gap (mm)	3.5
Maximum K	2.2
K@λ=0.12 nm, E=7 GeV	~1.8
	21

Spatial Profile of the Undulator Beam after Monochromator (July)

After full-beam tuning at the end of July, each spatial distribution at the low energy tail became more clear

Beamline commissioning plan

June ~ July:

- Facility inspection
- Characterization of XFEL
 - Transverse properties
 - Energy spectra including spikes
 - Stability, fluctuations
- Core experimental systems
 - 1-um focusing system (-> Prof. Yamauchi)
 - Synchronization laser
 - MPCCD & DAQ

August: Shutdown

Sep ~ Feb:

- Continue of characterization
 - Absolute intensity (SP8-AIST-DESY-PTB collaboration)
- Experimental systems
 - CDI chambers
 - Pump-probe systems: Laser to X-ray; X-ray to X-ray (autocorrelator)
 - Large-area MPCCD

March, 2012 ~: User Operation

Beamline

OH: Common optics & diagnostics

EH1: R&D, beam conditioning optics

BL3

EH2: Pump & Probe (CPA/OPA) w unfocused beam

EH3: Imaging/MEC w 1-um focusing, CPA Laser booth (CPA, OPA) BL1

EH4: Open hutch

XFEL-SPring-8 Exp. Facility

EH2: Pump & Probe system

EH3: 1-um K-B focusing by Osaka mirror

Focused down to 1.1 µm x 0.9 µm (FWHM)

Ablation pattern by focused XFEL on gold-deposited film

Collaboration with Osaka Univ. (Prof. Yamauchi) and Univ. Tokyo (Prof. Mimura)

Instruments for imaging

Cryo-imaging (Prof. Nakasako, Dr. Yamamoto) MAXIC (Dr. Song, Dr. Tono + Profs. Mafune, Nishino, Dr. Wada)

Single shot imaging of silver nano-particles

Kotobuki-Chamber for Cryogenic Coherent Diffraction Imaging

MAXIC (Multiple Application X-ray Imaging Chamber)

Absolute Intensity Measurement

AIST-PTB/DESY-SACLA Collaboration

AISTCalorimeterPTB/DESYGas Monitor DetectorSACLADiamond Foil Scattering Monitor

Three Detectors were Inter-calibrated.

DEST/PTB GMD

AIST Calorimeter

New Instruments are being prepared in collaboration with domestic researchers 25 proposals bundled into several categories **Coherent Imaging** Cryo-imaging MAXIC (multi-application) Liquid/Aero injector Pump & Probe Solid/liquid/gas AMO & Spectroscopy **Ion/Electron spectrometers Optics & Diagnostics K-B** Focusing **Autocorrelator** Phase retarder Absolute intensity Laser upgrade

Multiport-CCD (MPCCD) Sensor

50 um pixel

512 x 1024 pixels/sensor

60 frame/sec achieved by 8 ports/sensor

Peak signal of 2700 photons @ 6 keV achieved by XFEL optimized pixel design

Dead area of 300 um by optimized drive line pattern

Device life > 30 Mrad demonstrated

Noise < 0.18 photon@ 6 keV is achieved by state-of-art CDS electronics.

MPCCD Detector Systems

Single-sensor

1024 x 512 pixels 54.6 x 26.2 mm²

Dual sensor

1024 x 1024 pixels 54.6 x 52.1 mm² **Octal-sensor**

2048 x 2048 pixels ~ 110 x 110 mm²

Adjustable Central Hole of Octal-Sensor Detector

Synergistic Use of Two RIKEN-Hosted Key Technologies of National Importance

福井県

SACLA: concluding remarks

- Japan started construction of compact XFEL in 2006 and completed in 2011. It was named SACLA, and delivering 0.6~2.3 A SASE light at the moment.
- Commissioning of end-station equipment started in September, followed by the scheduled opening to public users in March 2012.
- Call for proposals started in October.
- Synergic use with both SPring-8 and K-computer is considered.
- By using the low-emittance and ultra-short-pulse electron linac of SACLA as an injector, we are considering upgrade of SPring-8 to SPring-8-II, hopefully in 2019.