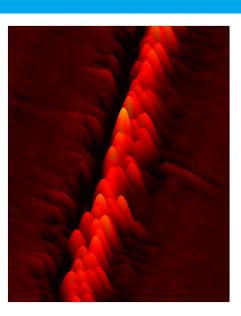
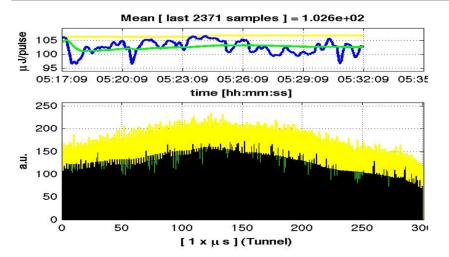
Status and extension of FLASH

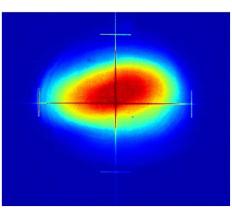
Josef Feldhaus

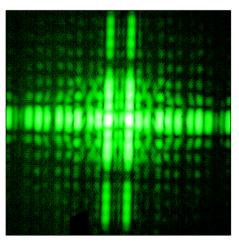
European XFEL / HASYLAB Users' Meeting DESY, January 26, 2012

- Overview of 3rd user run
- Status of the FLASH II project
- Future developments


FLASH Parameters 2011


FEL Radiation Parameters 2011

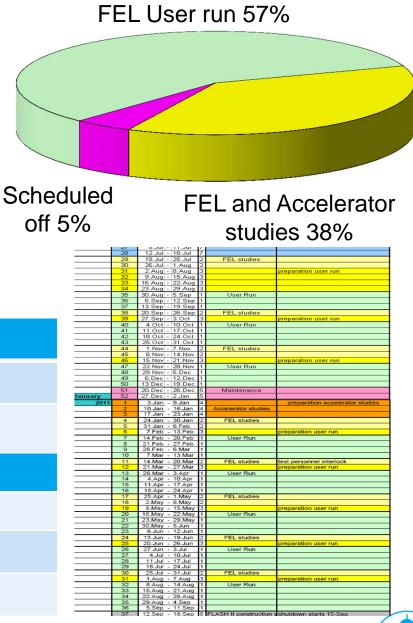

Wavelength range (fundamental)
Average single pulse energy
Pulse duration (FWHM)
Peak power (from av.)
Average power (example for 3000 pulses/sec)
Spectral width (FWHM)
Average Brilliance
Peak Brilliance


 $\begin{array}{l} 4.1 - 45 \text{ nm} \\ 10 - 400 \text{ } \mu\text{J} \\ 50 - 200 \text{ fs} \\ 1 - 3 \text{ GW} \\ \sim 300 \text{ mW} \\ \sim 0.7 - 2 \% \\ 10^{17} - 10^{21} \text{ }^{\ast} \\ 10^{29} - 10^{31} \text{ }^{\ast} \end{array}$

photons/s/mrad²/mm²/0.1%bw

150 publications on photon science at FLASH, many in high impact journals

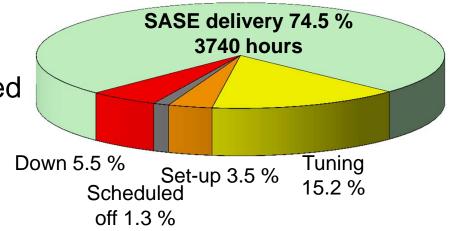
http://hasylab.desy.de/facilities/flash/publications/selected_publications

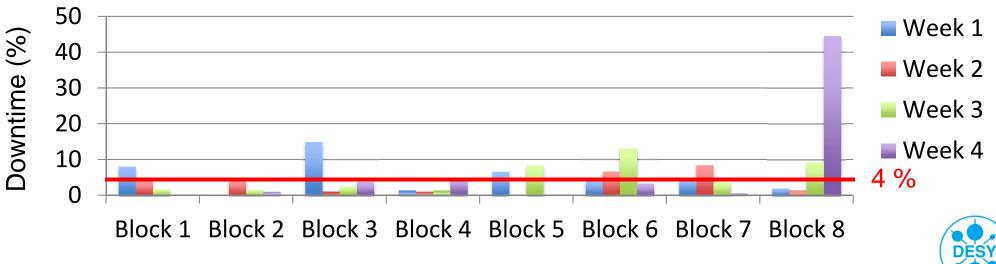


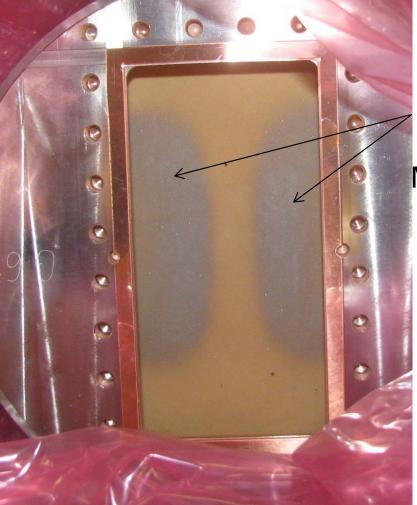
3rd User period

- Sep 2, 2010 Sep 5, 2011
- 75 proposals reviewed,29 proposals accepted
- 307 x 12 h-shifts scheduled plus ~20 % for in-house experiments and contingency
 - 8 user blocks of ~ 4 weeks each

ted Pulse Pattern						
Single bunch						
nch with different bunch spacing	53 %					
Requested FEL pulse duration						
< 50 fs fwhh	28 % (*)					
50 -100 fs	54 %					
not critical, but high intensity	18 % (**)					
	nch with different bunch spacing ted FEL pulse duration < 50 fs fwhh 50 -100 fs					

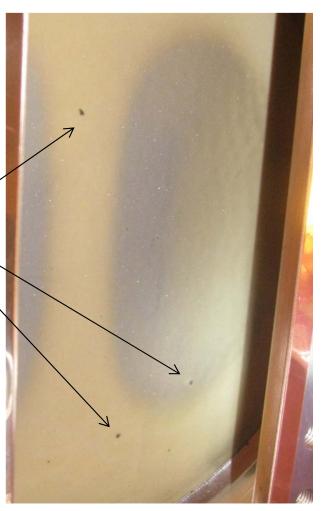

(*) 72 % multi-bunch (**) mostly multi-bunch




Beam delivery during user time

- 8 User blocks scheduled with 4955 hours
- 3740 hours of SASE delivery (user and in-house experiments)
- 3686 h scheduled for external users,
 3628 h delivered (98 %)
- Down time and tuning largely compensated by using in-house, contingency, and maintenance shifts
- Run stopped on Sep 5, 9am, due to RF-gun failure

RF-Window after dismounting

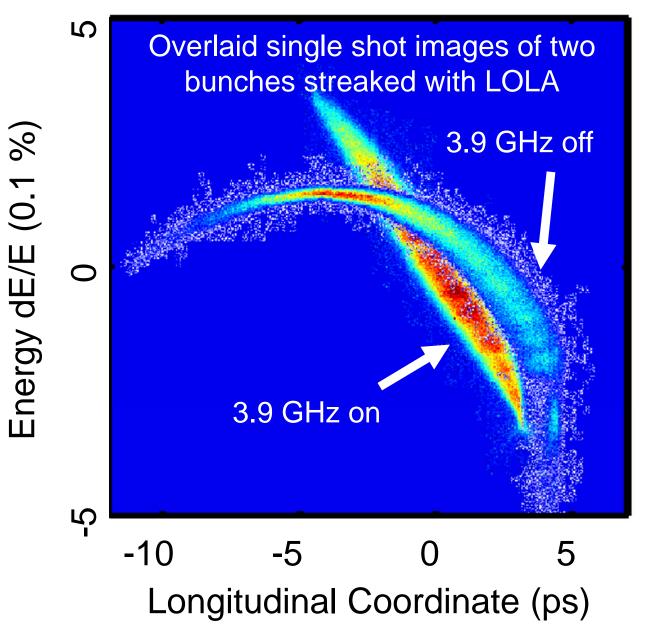


Vacuum side

Pattern which indicates the high field region (dipole field)

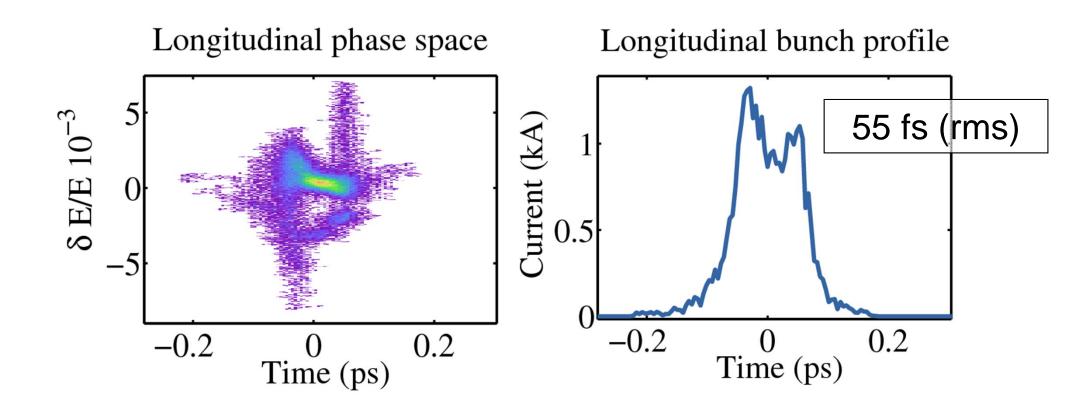
Many particles/dark spots visible

Dark area most likely metallization which is a definite risk of operation

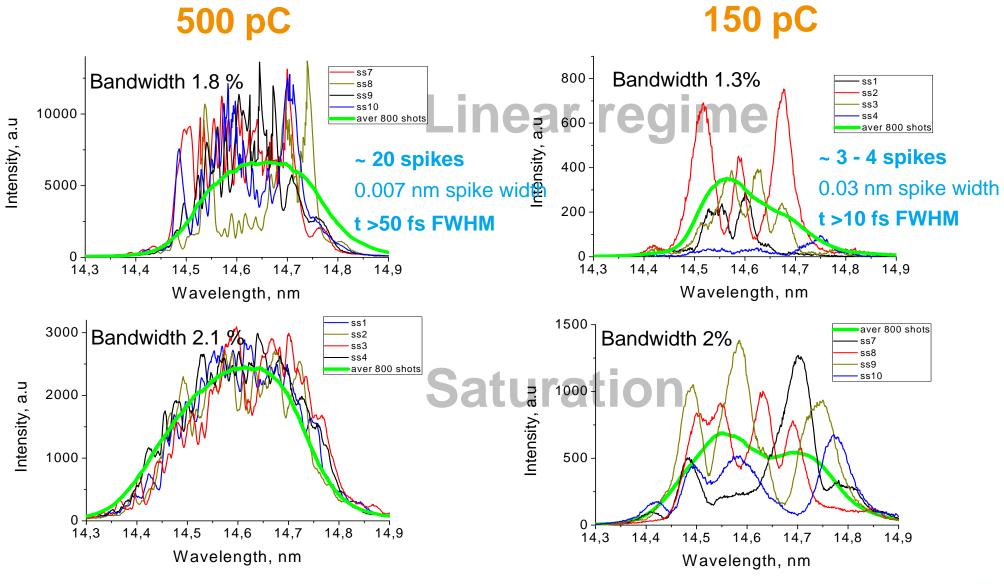

3.9 GHz (3rd harmonic) Module and Module 1

- New 1st accelerating module with improved cavities and Piezo tuners
- 3rd harmonic module with four nine-cell superconducting cavities operated at 3.9 GHz
 - □ includes RF system and LLRF regulation
 - □ built at FNAL (Fermilab) in a collaboration with DESY

Bunch compression using 3rd-harmonic cavities



- measured with LOLA,
- dispersive section
- beam energy 700 MeV
- slight compression with 1st module (ACC1)
- □ 3.9 GHz cavities on/off


Example of longitudinal electron bunch profile

Phase space distribution measured with LOLA (bunch charge 200 pC)

Spectra at different bunch charges

Low charge operation

- Requires new sensors and more sensitive electronics for electron beam diagnostics (charge, position, timing)
- Requires careful tuning of bunch compression using electron and photon diagnostics
- Online monitoring of electron phase space and FEL pulse length not available yet

Measurement of short FEL pulses

- Wanted: monitoring of the photon pulse length
- Experiments to compare different techniques are being performed in a regular manner
- Methods to measure FEL pulse duration being used or tested
 - THz streak camera with THz undulator, edge radiation, external laser
 - □ THz undulator as afterburner (optical replica of the FEL-pulse)
 - High resolution spectrometer
 - Statistical methods
 - Autocorrelation (several set-ups)
 - □ Cross correlation techniques (e.g. reflectivity)
- Next campaign in weeks 6, 9 and 10

4th User Period - schedule 2012

1	2.Jan - 8.Jan	7	FLASH commissioning		
2	9.Jan - 15.Jan	$\frac{7}{7}$	r EAon commissioning		
3	16.Jan - 22.Jan	7			
4	23.Jan - 29.Jan	$\frac{7}{7}$			
5	30.Jan - 5.Feb	4	Accelerator studies		
6	6.Feb - 12.Feb	4	Accelerator studies		
7	13.Feb - 19.Feb	4			
8	20.Feb - 26.Feb	2	FEL studies		
9	27.Feb - 4.Mar	2	T LL Studies		
10	5.Mar - 11.Mar	2			FL\$2012
11	12.Mar - 18.Mar	2		proporation upor run	FL32012
12	19.Mar - 25.Mar	3 1	User Run	preparation user run	
12		1	User Run		
13	26.Mar - 1.Apr	1			
	2.Apr - 8.Apr		EEL studies	a second lists deals to st. Oreans	
15	9.Apr - 15.Apr	2 2	FEL studies	personnel interlock test, Survey	DETDA interde de tent
16	16.Apr - 22.Apr	2			PETRA interlock test
17	23.Apr - 29.Apr	3		preparation user run	
18	30.Apr - 6.May	3			
19	7.May - 13.May	1	User Run		
20	14.May - 20.May	1			
21	21.May - 27.May	1			IPAC New Orleans
22	28.May - 3.Jun	1			
23	4.Jun - 10.Jun	2	FEL studies	Survey	
24	11.Jun - 17.Jun	3		preparation user run	
25	18.Jun - 24.Jun	1	User Run		school holidays HH
26	25.Jun - 1.Jul	1			school holidays HH/SH
27	2.Jul - 8.Jul	1			school holidays HH/SH
28	9.Jul - 15.Jul	1			school holidays HH/SH
29	16.Jul - 22.Jul	5	Maintenance	vacuum work, survey, bypass	Science at FELs
30	23.Jul - 29.Jul	2	FEL studies		school holidays HH/SH
31	30.Jul - 5.Aug	2			school holidays HH/SH
32	6.Aug - 12.Aug	3		preparation user run	
33	13.Aug - 19.Aug	1	User Run		
34	20.Aug - 26.Aug	1			1
35	27.Aug - 2.Sep	1			FEL Nara
36	3.Sep - 9.Sep	1			
37	10.Sep - 16.Sep	4	Accelerator studies		
38	17.Sep - 23.Sep	2	FEL studies		
39	24.Sep - 30.Sep	2			
40	1.Oct - 7.Oct	3		preparation user run	
41	8.Oct - 14.Oct	1	User Run		
42	15.Oct - 21.Oct	1			
43	22.Oct - 28.Oct	1			
44	29.Oct - 4.Nov	1			
45	5.Nov - 11.Nov	2	FEL studies		
46	12.Nov - 18.Nov	3	T EE OLUMOO	preparation user run	
40	19.Nov - 25.Nov	1	User Run		
48	26.Nov - 2.Dec	1	ooor ruin		
40	3.Dec - 9.Dec	1			
50	10.Dec - 16.Dec	1			
50	17.Dec - 23.Dec	6	Start Shudown 20-Dec-	2012	
51	24.Dec - 30.Dec	6	Start Shudown 20-Dec-	2012	
	24 LIPC - DU LIPC	O			
4	21 Dec 6 les	C			
1	31.Dec - 6.Jan 7.Jan - 13.Jan	6			

- 6 blocks with 250 shifts scheduled
- 20 projects selected out of 77 proposals (+5 reserve), plus 4 in-house projects, plus compensation for lost week
- First iteration for detailed schedule of experiments done

main problem: nobody likes to use 1st block

Consequences:

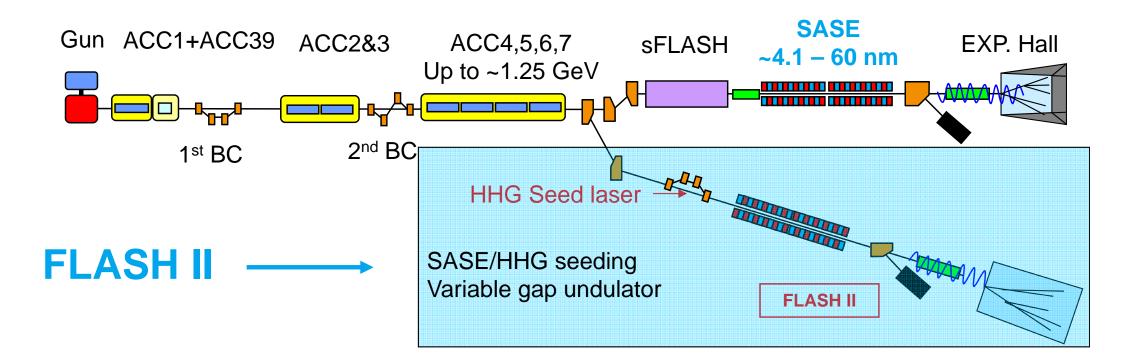
Time for machine tuning has to be taken from the user shifts

We need more flexibility in the future

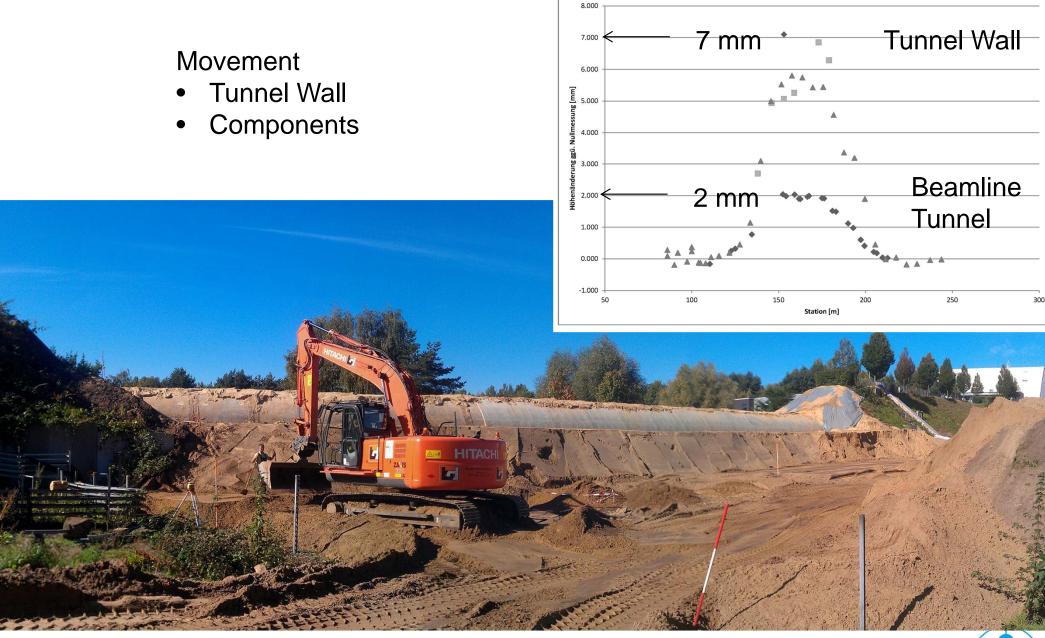
Example schedule of block 6

- Colors indicate different experiments
 (8 experiments on 3 beamlines, 4 need optical laser, 3 need THz)
- The schedule is a delicate balance between beamline availability, pumpprobe lasers, set-up time, sample changes, and many other constraints

November - December 2012 / Beamblock 6					last update: 19.1.2012						
						L = optical pump-probe laser SD= Split and delay					
						night shift (19:00 -7:00)					
19.11.12	Мо	machine setup for use	ers				Moeller	13.5 nm +/- 0.05 nm	1b., 50-100fs, max pulse energy	BL3	THz
20.11.12	_	Wernet	10.1 nm +/- 0.4 nm	1b., 50-100fs, max pulse energy	BL2	L	Wernet	10.1 nm +/- 0.4 nm	1b., 50-100fs, max pulse energy	BL2	L
21.11.12	We	Moeller	13.5 nm +/- 0.05 nm	1b., 50-100fs, max pulse energy	BL3		Moeller	13.5 nm +/- 0.05 nm	1b., 50-100fs, max pulse energy	BL3	TH
22.11.12	Th	Wernet	10.1 nm +/- 0.4 nm	1b., 50-100fs, max pulse energy	BL2	L	Wernet	10.1 nm +/- 0.4 nm	1b., 50-100fs, max pulse energy	BL2	L
23.11.12	Fr	Moeller	13.5 nm +/- 0.1 nm	1b., 50-100fs, max pulse energy	BL3	THz	Moeller	13.5 nm +/- 0.1 nm	1b., 50-100fs, max pulse energy	BL3	TH
24.11.12		Wernet	10.1 nm +/- 0.4 nm	1b., 50-100fs, max pulse energy	BL2	L	Wernet	10.1 nm +/- 0.4 nm	1b., 50-100fs, max pulse energy	BL2	L
25.11.12	Su	Moeller	13.5 nm +/- 0.1 nm	1b., 50-100fs, max pulse energy	BL3	THz	Moeller	13.5 nm +/- 0.1 nm	1b., 50-100fs, max pulse energy	BL3	TH
26.11.12	Мо	Acremann	20.7 nm +/- 3 nm	300b., 500kHz, 50-100fs, 10µJ	PG2	L	Acremann	20.7 nm +/- 3 nm	300b., 500kHz, 50-100fs, 10µJ	PG2	L
27.11.12	Tu	Maintenance					Maintenance				
28.11.12	We	Maintenance / machin	e setup for users				Moeller	13.5 nm +/- 0.1 nm	1b., 50-100fs, max pulse energy	BL3	TH
29.11.12	Th	Moeller	13.5 nm +/- 0.1 nm	1b., 50-100fs, max pulse energy	BL3	THz	Acremann	20.7 nm +/- 3 nm	300b., 500kHz, 50-100fs, 10µJ	PG2	L
30.11.12	Fr	Acremann	20.7 nm +/- 3 nm	300b., 500kHz, 50-100fs, 10µJ	PG2	L	Moeller	13.5 nm +/- 0.1 nm	1b., 50-100fs, max pulse energy	BL3	TH
1.12.12	Sa	Moeller	13.5 nm +/- 0.05 nm	1b., 50-100fs, max pulse energy	BL3	THz	Moeller	13.5 nm +/- 0.05 nm	1b., 50-100fs, max pulse energy	BL3	TF
2.12.12	Su	Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2		Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2	
3.12.12	Мо	Acremann	20.7 nm +/- 3 nm	300b., 500kHz, 50-100fs, 10µJ	PG2	L	Acremann	20.7 nm +/- 3 nm	300b., 500kHz, 50-100fs, 10µJ	PG2	L
4.12.12	Tu	Maintenance					Maintenance				
5.12.12	We	Maintenance / machin	e setup for users				Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2	
6.12.12	Th	Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2		Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2	
7.12.12	Fr	Radu	8.7 nm +/- 0.1 nm	30b., 1MHz, <50fs, max pulse energy	BL3	THz	Radu	8.7 nm +/- 0.1 nm	30b., 1MHz, <50fs, max pulse energy	BL3	TH
8.12.12	Sa	Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2		Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2	
9.12.12	Su	Gerasimova inhouse	18.8 nm +/- 0.1 nm	800b., 1MHz, >100fs , max pulse energy	PG2	L	Gerasimova inhouse	18.8 nm +/- 0.1 nm	800b., 1MHz, >100fs , max pulse energy	PG2	L
10.12.12	Мо	Radu	8.7 nm +/- 0.1 nm	30b., 1MHz, <50fs, max pulse energy	BL3	THz	Radu	23.5 nm +/- 0.1 nm	30b., 1MHz, <50fs, max pulse energy	BL3	TH
11.12.12	Tu	Gerasimova inhouse	18.8 nm +/- 0.1 nm	800b., 1MHz, >100fs , max pulse energy	PG2	L	Gerasimova inhouse	18.8 nm +/- 0.1 nm	800b., 1MHz, >100fs , max pulse energy	PG2	L
12.12.12	We	Radu	8.7 nm +/- 0.1 nm	30b., 1MHz, <50fs, max pulse energy	BL3	THz	Radu	23.5 nm +/- 0.1 nm	30b., 1MHz, <50fs, max pulse energy	BL3	TH
13.12.12	Th	Radu	23.5 nm +/- 0.1 nm	30b., 1MHz, <50fs, max pulse energy	BL3	THz	Radu	23.5 nm +/- 0.1 nm	30b., 1MHz, <50fs, max pulse energy	BL3	TH
14.12.12	Fr	Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2		Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2	
15.12.12	_	Chapman/DePonte	4.2 nm +/- 0.01 nm	100b., 1MHz, >100fs , max pulse energy	BL2		setup 20.8 nm				
16.12.12	Su	Stojanovic inhouse	20.8 nm +/- 0.3 nm	1b., >100fs , max pulse energy	BL3	L THz	Contingency / Machine	setup			
17.12.12	Мо	Stojanovic inhouse	20.8 nm +/- 0.3 nm	1b., >100fs , max pulse energy	BL3	L THz	Contingency / Machine	setup			
8.12.12	Tu	Aquila	13.5 nm +/- 0.2 nm	100b., 40kHz, <50fs, 10µJ	BL2		Aquila	13.5 nm +/- 0.2 nm	100b., 40kHz, <50fs, 10µJ	BL2	
9.12.12	We	Stojanovic inhouse	20.8 nm +/- 0.3 nm	1b., >100fs , max pulse energy	BL3	L THz	Stojanovic inhouse	20.8 nm +/- 0.3 nm	1b., >100fs , max pulse energy	BL3	Ľ
20.12.12	Th	Aquila	13.5 nm +/- 0.2 nm	100b., 40kHz, <50fs, 10µJ	BL2		Aquila	13.5 nm +/- 0.2 nm	100b., 40kHz, <50fs, 10µJ	BL2	
21.12.12	Fr	Stojanovic inhouse	20.8 nm +/- 0.3 nm	1b., >100fs , max pulse energy	BL3	L THz	Stojanovic inhouse	20.8 nm +/- 0.3 nm	1b., >100fs , max pulse energy	BL3	1.7


preliminary - first iteration

Josef Feldhaus | European XFEL / HASYLAB Users' Meeting, DESY | January 27, 2011 | Page 14


The FLASH II project

- 2nd FEL in a new tunnel and new experimental hall
- Electron beam switch behind last accelerator module
- Tuning of FLASH2 by changing undulator gap
- Employing SASE and HHG seeding

Civil Construction started in Sep 2011

Construction of FLASH II - Sep 2011

Construction of FLASH II - Nov 2011

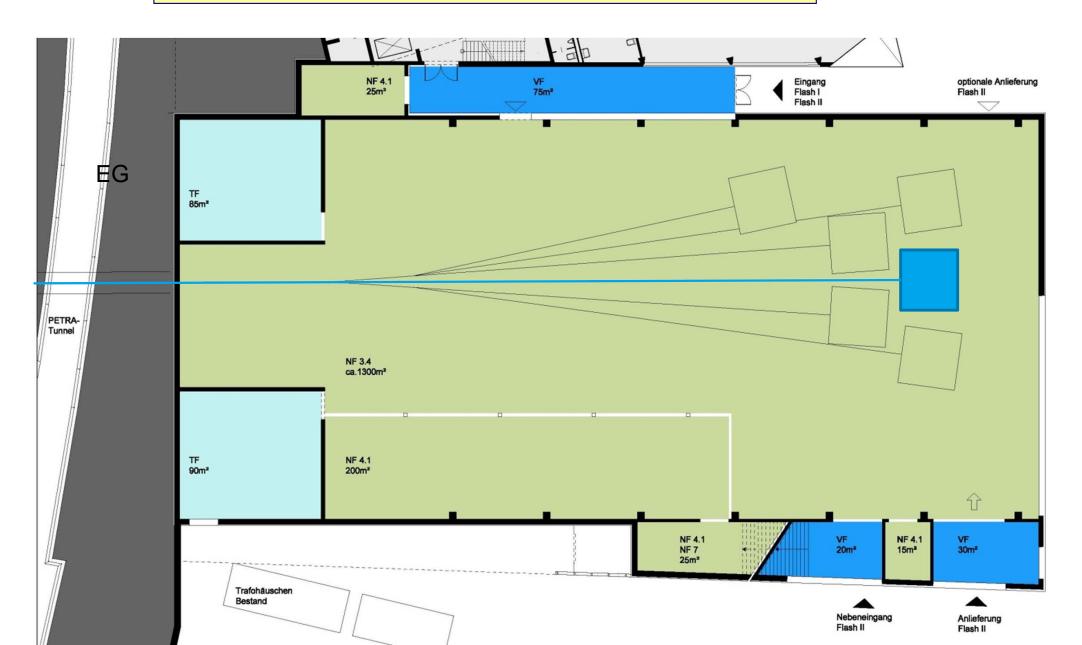
Construction of FLASH II - Dec 2011

Construction of FLASH II - Jan 2012

FLASH in 2014

from the Sout (walking on the FLASH tunnel)

Time schedule FLASH II


Taking into account

- PETRA III and DORIS runs
- XFEL and PETRA Upgrade construction
- Civil Construction Tunnel started in September 2011 (3 month FLASH1 shutdown Sep-Dec 2011)
- Installation of hardware starting autumn 2012
- Connection FLASH1 + 2: Winter / Spring 2013 (FLASH1 shutdown)
- Technical commissioning starting spring 2013
- Experimental hall construction starting summer 2012

New experimental hall - in 2014

Only the centre beamline is in the FLASH II budget

"New Science Opportunities with FLASH" Workshop October 12 -14, 2011.

- Over 150 participants
- 20 user talks and over 40 posters, 10 facility talks
- 1st day: Presentation of news from FLASH and status of FLASH II project
- 2nd and 3rd day: Highlights of research at FLASH and proposals for permanent end stations for FLASH 2

- First discussion of the scientific perspectives and possible permanent end stations with the user community
- Should be continued in order to make use of the upcoming BMBF Verbundforschung funding period in a coordinated way (Dec 2012)
- There is a strong interest in studying magnetic and biological materials => <1.5 nm wavelength with variable polarisation; water window</p>
- There is a strong demand for ultrahigh temporal resolution (~10 fs)
 => synchronisation, seeding, diagnostics for jitter and pulse duration
- We need to develop a medium-term scenario for FLASH as a whole

Further development of FLASH

after FLASH2 is operational with a few beamlines:

- New FLASH1 undulator with shorter period, variable gap and variable polarisation
- Further energy upgrade to ~1.5 GeV (exchange of modules)

later possibly:

- □ FLASH3 option (extraction and beam dump prepared)
 - will depend on user demand in the future
 - could provide long wavelengths: ~8 80 nm

Increased duty cycle

Possible long-term scenario for FLASH

	FLASH1	FLASH2	FLASH3
Energy (GeV)	0.7-1.6	0.7-1.6	0.7-1.6
Peak current (kA)	2.5	2.5	2.5
Charge (nC)	0.5	0.5	0.5
Normal. emittance (mm mrad)	1.0*	1.3	2.0
Energy spread (MeV)	0.2	0.5	1.0
Wavelength range @ 1.6 GeV	1.5 – 2	2.5-6.5	8-12
Undulator period (mm)	23	31.4	36
Minimum gap	10	9	9
Saturation length	<36	<30	<20
Total wavelength range**	1.5 – 10	2.5 – 40	8 - 80

by Bart Faatz

* new gun klystron needed to get 60 MV/m gradient \rightarrow 1 mm mrad emittance ** 0.7 – 1.6 GeV

Summary

- The 3rd user period was a great success from the operational point of view, after a long shutdown with many significant changes
- □ FLASH operation is more stable and reliable than ever (uptime 96 %)
- Many things are being improved or developed, e.g. reliable operation with very short pulses (<50 fs FWHM) together with many pulses per train and synchronization to the level of the pulse length
- FLASH II is making progress, but some delays are foreseeable due to too many other parallel projects
- The further development of the facility is under discussion with the user community; we should coordinate the applications for BMBF funding ("Verbundforschung") to support the construction of new beamlines and experimental stations

SRI20

SRI 2012 Satellite Meeting

15 – 18 July, 2012 at DESY in Hamburg, Germany

jointly organised by DESY and European XFEL

The Science at FELs Satellite Meeting to the 11th International Conference on Synchrotron Radiation Instrumentation in Lyon, France will present science highlights achieved in the first seven years of operation of short-wavelength Free-Electron Lasers (FELs). Applications from quantum optics to life sciences and systems from atoms to complex solids will be featured. A focus will also be placed on new directions in science at FELs and challenges to scientific instrumentation. Hamburg is directly connected to Lyon via airplane. Visits of the FLASH facility at DESY and the European XFEL construction site will be included in the meeting programme.

International programme committee

M. Altarelli (European XFEL), H. Dosch (DESY), T. Ishikawa (RIKEN SPring-8), F. Parmigiani (University of Trieste), C. Pellegrini (UCLA), J. Stöhr (SLAC)

Local organising committee

E. Weckert (chair), J. Feldhaus, E. Plönjes (DESY) Th. Tschentscher (chair), I. Gembalies, A. Madsen, M. Meyer (European XFEL)

For registration and programme information please visit: science-at-FELs-2012.desy.de

Deadline for abstract submission is 30 January 2012.

European

- > science-at-FELs-2012.desy.de
- > July 15-18, 2012
- Abstract submission deadline:
 extended to Feb 6, 2012
- > Registration deadline: April 30, 2012

