

Conceptual Design Report SQS - Scientific Instrument @ European XFEL

M. Meyer, European XFEL GmbH

Free Electron Lasers

"Small Quantum Systems"

European XFEL Users Meeting, January 25, 2012

Conceptual Design Report SQS - Scientific Instrument @ European XFEL

- Soft X-rays at the European XFEL
- Scientific Case for SQS
- Instrument Layout
 - beam line, SQS end station, floor plan
- Infra-structure / Add-ons

optical laser, diagnostics, add-on equipment, time line

3

XFEL Definition of the SQS Instrument

Workshops

1) International Workshop on the Science with and the Instrumentation for Small Quantum Systems (SQS) at the European XFEL University of Aarhus, Denmark, **October 29-31, 2008**

2) International Workshop on Soft X-ray science and instrumentation at the European XFEL Trieste, Italy, **December 16 - 17, 2010**

Reviews

- 1) Review Meeting of the Advisory and Review Team (SQS-ART)
- J.Bozek (SLAC), Th. Möller (TU Berlin), J. Nordgren (U. Uppsala), H. Pedersen (U. Aarhus)
- J. Ullrich/A. Rudenko (MPI/CFEL), J. Viefhaus (DESY), M. Vrakking (MBI) April 6th, 2011
- 2) Meeting of the Scientific Advisory Committee (SAC) of the European XFEL April 8th, 2011

M. Meyer, European XFEL Users Meeting, January 25, 2012

XFEL Photon beam transport systems

European XFEL

XFEL Photon energy ranges

XFEL SASE 3 Undulator

General Soft X-Ray radiation parameters

Pulse widths	2 – 100 fs	Coherence time	0.3 – 1.8 fs
Pulse energy	0.2 – 11.0 mJ	Bandwidth	0.25 – 0.7 %
Peak power	50 – 120 GW	Number of photons	0.1 – 2 x 10 ¹⁴
Average power	3 – 300 W	Average flux of photons	0.3 – 5.4 x 10 ¹⁸
Beam size	40 – 80 μm	Average brilliance	0.03 – 2.6 x 10 ²⁴
Rep. rate	10 Hz (2700 pulses i	in bunch train)	

Parameter	Unit					
Bunch charge	рС	20	100	250	500	1000
Pulse duration (FWHM)	fs	2	9	23	43	107

Scientific case for SQS Scientific Instrument

European

XFEL Scientific Applications "Investigation of atoms, ions, molecules and clusters in intense fields and

non-linear phenomena"

European **XFEL** Multi-photon Multiple Ionization

FLASH : 93 eV $(7.8 \text{ x } 10^{15} \text{ W/cm}^2)$ IP(Xe 21+) \approx 5 keV

Young et al., Nature 466, 56 (2010)

LCLS: 800 - 2000 eV (<1 x 10¹⁸ W/cm²) Ne(+) \rightarrow Ne (10+)

Intense Radiation \longleftrightarrow Matter

Coulomb explosion of large molecules

R. Neutze et al., *Nature*, 2000, **406**, 752

- Intensity dependence
- **Time evolution**
- Wavelength dependence

XFEL Fundamental Processes

Intense Radiation

Prototype Studies

60 Hz

very limited statistics

Innershell Processes

Electron Spectroscopy

- Detailed information about energy redistribution

Coincidence Spectroscopy

- Dynamical information for correlated electron emission

high rep. rate (27 000 pulses/s)

Double core hole formation Complex Relaxation Dynamics

- New phenomena -

Fluorescence Spectroscopy

- High resolution data unperturbed by space charges

European XFEL Ultrafast Dynamics (Pump – Probe)

Atomic photoionization in strong 'overlapping' optical fields

Meyer et al., PRL108 (2012)

emission angle (degree)

Kazansky, Kabachnik, JPB43, 035601 (2010)

M. Meyer, European XFEL Users Meeting, January 25, 2012

Molecular dissociation dynamics

Landers & Dörner PRL 87 (2001), 013002 electron – ion – ion coincidences 1 pulse = 1 event !! FEL (fs) \rightarrow Dynamical information!!!

XFEL Ultra-fast processes

Complex molecules

27 000 pulses / sec

Size dependence of multiple ionization in clusters

General Layout of SQS Scientific Instrument

European XFEL

Optical layout of the beam transport system (H. Sinn)

direct beam

- \rightarrow Small Quantum System (SQS)
- monochromatized
- → Spectroscopy @ Coherent Scattering (SCS)

XFEL Floor plan (SASE3)

XFEL SQS end-station

AQS - Chamber

XFEL SQS end-station

AQS – Atomic-like Quantum Systems

XFEL Analyzers and Detectors

AQS - Chamber

- 1. HR-electron Time-of-Flight (eTOF)
 - angle-resolved spectroscopy
 - **1D MCP detector** $E / \Delta E > 10^4$ acceptance 5% of 4π e - e – coincidences (5 eTOFs)
- 3. Velocity-Map-Imaging (VMI)
 - full angular information
 - 2D delay-line detector $E / \Delta E > 10^2$ acceptance 4π e – ion - coincidences

2. Magnetic Bottle Electron Spectrometer

- single shot capability
- **1D MCP detector** $E / \Delta E > 10^2$ acceptance $< 2\pi$ e - ion - coincidences

4. XUV fluorescence spectrometer

- high spectral resolution
- 2D CCD E / Δ E > 10⁴ acceptance <1% of 4 π

NQS - Nano-size Quantum Systems

XFEL Analyzers and Detectors

21

NQS - Chamber

- 1. Reaction Microscope
 - angle-resolved spectroscopy
 - 2D delay-line detector $E / \Delta E > 10^2$ acceptance 4π e-ion-fluo-coincidences

2. Time-Of-Flight

- electron kinetic energies
- 1D MCP detector E / Δ E > 10³ acceptance ~5% of 4 π e-ion-fluo-coincidences

3. Thomson Parabola

- high recoil energies
- 2D CCD acceptance <1% of 4π

4. 2D Pixel detector

- imaging experiments
- DSSC or fast CCD
 - < 10 nm spatial resolution e-ion-fluo-coincidences

European

KFEL DSSC 1 M Pixel Detector Module (M. Kuster)

Key Detector Parameters

- Goal: Single photon sensitivity
 5 σ @1 keV and 4.5 MHz
- Energy range

0.5 – 6 (25) keV

- Dynamic range
 - > 6000 photons/pixel/pulse @1 keV
- Single photon sensitivity
 5 σ @ 1 keV (5 MHz)
 5 σ @ 0.5 keV (≤ 2.5 MHz)
- Number of storage cells 576
- Smallest detector unit "ladder 128 x 512 pixels
- 4 ladders built on quadrant
- 4 quadrants = 1k x 1k detector

Porro et al. NIM A (2010) vol. 624 pp. 509

Data transfer rate: 1 GB / train (10 GB / s)

European

XFEL Optical Laser (M. Lederer)

Intra-Burst:

- 2700 pulses
- $f_{intra-burst} = 0.1...4.5 \text{ MHz}$
- 1mJ per pulse at 1MHz
- τ_{FWHM} = 10 ... 100fs
- \approx 10 fs jitter (rms)

Collaboration DESY, European XFEL, CFEL

"Burst Energy": ... 1J "Burst-Power": ... 1kW "Average Power": ... 10W

Pump-Probe Laser	Alignment Laser
1 - 4.5 MHz rep. rate	100 kHz rep. rate
0.2 – 1 mJ pulse energy	1 – 250 mJ pulse energy
10 - 100 fs pulse duration	30 fs / 1 ns pulse duration
< 10 fs synchronization	< 10 fs synchronization

<u>Option</u>: 800 nm, 100 kHz, 20 – 100fs, 10mJ 1030 nm, 100 kHz, 1 ns, 250 mJ

SQS Specific

- OPA (200 3000 nm)
- variable polarization
- THz radiation
- beam characterization
- pulse stretcher

FEL beam parameters for experiments

single shot / "on-line"

1. pulse energy: ± 1% (rel.)

Gas Monitor Detector (GMD)

2. arrival time: < 10fs

Reflectivity change (10 Hz),

THz – electron streaking

3. wavelength: $\Delta\lambda / \lambda = 10^{-3}$

Photoelectron Spectrometer

4. spectral profile: $\Delta\lambda / \lambda = 10^{-4}$

VLS-grating monochromator

"off-line"

- 5. pulse duration: ∆T = < 10 fs auto-correlator cross-correlation
- 6. spatial profile extended beam on CCD
- 7. temporal profile

N.N., THz electron streaking ?

8. beam position: 1 μm

YAG screens

XFEL Add-on Equipment

1) Mass selected Cluster Source

2) State-, size, and isomer-selected samples of polar molecules and clusters

Küpper, CFEL, Hamburg

4) Injector for biological samples

Schulz, European XFEL, Univ. Uppsala

2.7 x 4.4 m²

M. Meyer, European XFEL Users Meeting, January 25, 2012

European XFEL SQS Satellite Workshop

SQS Scientific Instrument: Status report and User participation

Room 2.26, AER 19, Start at 2:00 pm

14h00 - 14h10	Introduction	Michael Meyer (European XFEL)			
14h10 - 14h30	Cluster source for SQS	Thomas Möller (TU Berlin)			
14h30 - 14h50	COMO (Controlled Molecules)	Jochen Küpper (CFEL Hamburg)			
14h50 - 15h10	Nano-particle & Bio-molecule source	Joachim Schulz (European XFEL)	Seminar room 3.1	1, AER 19 (together with hRIXS Conso	rtium Meeting)
15h10 - 16h30	Discussion of SQS – Conceptual Design & Summary	Michael Meyer	17h00 - 17h25	SASE 3 and beamline layout	Harald Sinn (European XFEL)
16h30 - 17h00	Coffee Break		17h25 - 17h45	Soft X-ray detectors at European XFEL	Andreas Koch (European XFEL)
				Room 2.26, AER 19	
			18h00 – 19h00 (optional)	Discussion of SQS - CDR (continued)	Michael Meyer

XFEL Timeline

SQS Instrumenthttps://www.xfel.eu/research/instruments/sqs

Conceptual Design Report	April 2011
Consultation of user community	> April 2011
Technical Design Report	end 2012
Start of sending out orders	early 2013
Definition, organization of add-on equipment	2013
Reception, test and assembly	mid 2013
Installation in experimental hall	mid 2014
Ready for beam	spring 2015

XFEL Acknowledgement

European XFEL

Paul Radcliffe, Tommaso Mazza Jerome Gaudin, Harald Sinn Chris Youngman, Krzystof Wrona Markus Kuster Max Lederer Jan Grünert Adrian Mancuso

Serguei Molodtsov, Thomas Tschentscher

SQS Scientific Instrument X-ray Optics & Transport **DAQ & Control Systems Detector Development Optical Lasers Photon Diagnostics** SPB Scientific Instrument Scientific Directors

Thank you for your attention!

