
Burkhard Heisen for WP76
European XFEL GmbH User-Meeting

25 January 2012

A homogeneous software 
framework

with scientific computing as an integral component



A homogenous software framework with scientific computing as integral part

What will be in this presentation? 2

Burkhard Heisen (WP76)

 What software is needed to enable users to run experiments?
 Understand functional and technical requirements
 A homogenous software framework is needed

 Conceptual ideas and initial implementation of the framework
 Standardization and component re-usage
 Managing distributed applications

 Scientific computing 
 Data pipelines
 Image processing

 I am NOT talking about specific simulation or analysis software



A homogenous software framework with scientific computing as integral part

What software do we need? 3

Burkhard Heisen (WP76)

DAQ
data readout
online processing
quality monitoring 
(vetoing)

SC
processing pipelines
distributed and GPU 

computing
specific algorithms 

(e.g. reconstruction)

Control
drive hardware and 
complex experiments
monitor variables & 
trigger alarms

DM
storage of experiment 
& control data
data access, 
authentication 
authorization etc.

setup computation & 
show scientific results

allow some 
control & show 
hardware status

show online data 
whilst running

A typical use case:

Accelerator Undulator Beam Transport

DM SC

ControlDAQ

Tight integration of applications



A homogenous software framework with scientific computing as integral part

XFEL.EU will need solutions for scientific computing 4

Burkhard Heisen (WP76)

Experimental data is huge and must be stored local to XFEL.EU
No bulk data take home. We have to give users the possibility to analyze 
their data at XFEL.EU (“data local computing”).

The huge amount of data needs special infrastructure to be 
efficiently processed
We have to give the users a simple way to make use of CPU/GPU cluster 
systems. Help understanding where data is, avoiding unnecessary 
duplication, keeping track of what has been done and when.

Beam time and storage is expensive, collecting useless data 
has to be avoided
Analysis whilst measuring is needed. Requires tight integration of DAQ, 
Control and SC.



A homogenous software framework with scientific computing as integral part

Our own mandate – Technical requirements 5

Burkhard Heisen (WP76)

 Provide a unified interface to all equipment (hide details of hardware) 
and to all algorithms involved in data storage or processing 

 Make integration/development of new components simple, intuitive and 
unambiguous 

 Hide the network, be location transparent 

 Simple deployment and maintenance including third-party resources

 Enable communication and fast data exchange between applications
of any category (Control, DAQ, Data Management, Scientific Computing)



A homogenous software framework with scientific computing as integral part

Standardization of applications 6

Burkhard Heisen (WP76)

 It must however be guaranteed that all needed flavors of specialized applications can 
be developed within the standardized frame

 Proper standardization results in modular, scalable and homogeneous software

 Before starting: check whether others have done something like that already
 Most control systems standardize (e.g. Tango, Doocs) software/hardware communication

 Big scientific packages do (e.g. CCP4, Phenix, Eman) hkl handling, image processing

 Scientific workflow systems as well (e.g. Triana, Kepler) data input/output, configuration

 However, we found no system that standardizes in such a “careful” way that our wide 

spectrum of functional requirements would be covered by a single solution

 Composing different top-level software packages is difficult and leads to non-uniform software

 Decided to build the top-layer ourselves, carefully learning from others and preparing to 

interface important systems



A homogenous software framework with scientific computing as integral part

The homogenous software solution 7

Burkhard Heisen (WP76)

 Identified components common to all software requirements
memory/object management, configuration, logging, network services,
error handling, data IO, python binding, databases, GUI, 
plug-in mechanism, cross-platform building and installation systems

 Do not re-invent the wheel, use high quality libraries under the hood
Boost, Qt, OpenMQ, Log4cpp, TinyXML, Cimg, etc.

 Thought about concepts of how to deal with many distributed applications 
connected only via network

 Decided to use C++ / Boost / Python / PyQt as core technology



A homogenous software framework with scientific computing as integral part

Main ingredients of a distributed system 8

Burkhard Heisen (WP76)

Configuration and Self-description
Motor-Right: “Hello, I am Motor-Right and my default velocity is 2 m/s.”
T1: “I am a PC-Layer device, will process exactly one train of frames.”

Flow-Control
Slit: “If Motor-Right also stops moving, I can report the new gap size.”
Compute-B: “Whilst I am processing, I can not read a new frame.”

Communication
Controller to Motor-Left: “Move 5 cm!”
Compute-A to Compute-B: “I have an processed image available”



A homogenous software framework with scientific computing as integral part

Communication: Event-Driven vs. Scheduled 9

Burkhard Heisen (WP76)

Node 1

Node 2

Node 3

Node 4

Emit

Notify

Notify

Notify

Node 1

Node 2

Node 3

Node 4

Request

Response

Event-driven communication
“Push Model”

A minimal set of information is passed
System is scalable (maintains performance)

Failure is harder to detect

Scheduled communication
“Poll Model”

Direct feedback on request
Nodes may be spammed (DOS)

Growing systems loose performance
Typically, lots of extra traffic is generated



A homogenous software framework with scientific computing as integral part

By the way… that is what Apple does: 10

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Communication API: Signals and Slots 11

Burkhard Heisen (WP76)

moveRight

onMove

onMove

moveLeft

Motor 1

Motor 2

Slit

onMove
Motor 3

Motor 4

onMove

 Signal: declares a command-
name and the possible associated 
instructions 

 Slot: declares a command-receiver 
and the possibly receivable 
instructions

 Connect: connects one signal of 
a specific source to one slot of a 
specific target

 Emit: executes a previously 
declared command with a 
specific instruction

M
otor 3

M
otor 4

gap

offset

Motor 1 Motor 2

gap

offset Slit



A homogenous software framework with scientific computing as integral part

Main ingredients of a distributed system 12

Burkhard Heisen (WP76)

Communication
Controller to Motor-Left: “Move 5 cm!”
Compute-A to Compute-B: “I have an processed image available”

Configuration and Self-description
Motor-Right: “Hello, I am Motor-Right and my default velocity is 2 m/s.”
T1: “I am a PC-Layer device, will process exactly one train of frames.”

Flow-Control
Slit: “If Motor-Right also stops moving, I can report the new gap size.”
Compute-B: “Whilst I am processing, I can not read a new frame.”



A homogenous software framework with scientific computing as integral part

Configuration and Self-Description 13

Motor Device
expectedParameters {
FLOAT_ELEMENT().key(“velocity”)
.description(“Velocity of the motor”)
.unitSymbol(“m/s”)
.assignmentOptional().defaultValue(0.3)
.maxInc(10)
.minInc(0.01)
.reconfigurable()
.commit();

INT32_ELEMENT().key(“currentPosition”)
.description = “Current position of the motor”
.readOnly()
[…]

SLOT_ELEMENT().key(“onMove”)
.description = “Trigger this slot to move the motor”
.assignmentOptional().noDefault()
.reconfigurable()
[…]

}

// Called once at initial construction 
configure { […] }

// Called at each (re‐)configuration request
onReconfigure { […] } 

 Distinction between configuration at 
object construction and (re-)configuration 
of an existing object instance 

 No need for user to validate any 
parameters. This is internally done 
taking the expectedParameters as 
white-list

 As the communication is also 
configurable, complex components 
can be composed using existing 
building blocks

 Configurations can be converted 
to/from XML and XSD. Allows for a 
full-validated, full-controlled, strictly-
typed plug & play architecture

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Main ingredients of a distributed system 14

Configuration and Self-description
Motor-Right: “Hello, I am Motor-Right and my default velocity is 2 m/s.”
T1: “I am a PC-Layer device, will process exactly one train of frames.”

Flow-Control
Slit: “If Motor-Right also stops moving, I can report the new gap size.”
Compute-B: “Whilst I am processing, I can not read a new frame.”

Communication
Controller to Motor-Left: “Move 5 cm!”
Compute-A to Compute-B: “I have an processed image available”

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

AllOkState

Flow control – Using finite state machines 15

Compute Device State Machine

ReadyState

RunningState

Source State Event Target State Action Guard

AllOkState ErrorFoundEvent ErrorState ErrorFoundAction none

ErrorState EndErrorEvent AllOkState EndErrorAction none

Source State Event Target State Action Guard

ReadyState ReconfigureEvent None ReconfigureAction IsValidReconfiguration

ReadyState ComputeEvent RunningState ComputeAction None

RunningState PauseEvent PausedState PauseAction None

RunningState FinishedEvent FinishedState FinishAction None

AllOkState

StateMachine

PausedState

AbortedStateFinishedState

ErrorState
reconfigure

compute
pause

compute
abort

reset

errorFound

endError

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Main ingredients of a distributed system 16

Configuration and Self-description
Motor-Right: “Hello, I am Motor-Right and my default velocity is 2 m/s.”
T1: “I am a PC-Layer device, will process exactly one train of frames.”

Flow-Control
Slit: “If Motor-Right also stops moving, I can report the new gap size.”
Compute-B: “Whilst I am processing, I can not read a new frame.”

Communication
Controller to Motor-Left: “Move 5 cm!”
Compute-A to Compute-B: “I have an processed image available”

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Putting it all together – Device Server & Devices 17

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Device (shared library)

Message Broker
(Event Loop)

Configuration & 
Self-description
Configuration & 
Self-description

Flow-ControlFlow-Control

CommunicationCommunication

Configuration & 
Self-description

Flow-Control

Communication

Custom 
Code 

Configuration & 
Self-description

Flow-Control

Communication

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Configuration & 
Self-description
Configuration & 
Self-description

Flow-ControlFlow-Control

CommunicationCommunication

Configuration & 
Self-description

Flow-Control

Communication

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Putting it all together – Device Server & Devices 18

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Device (shared library)

Message Broker
(Event Loop)

Configuration & 
Self-description
Configuration & 
Self-description

Flow-ControlFlow-Control

CommunicationCommunication

Configuration & 
Self-description

Flow-Control

Communication

Camera 
control 

Configuration & 
Self-description

Flow-Control

Communication

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Configuration & 
Self-description
Configuration & 
Self-description

Flow-ControlFlow-Control

CommunicationCommunication

Configuration & 
Self-description

Flow-Control

Communication

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Multi-purpose GUI, thanks to standardization 19

Burkhard Heisen (WP76)

Navigation Custom attribute composition Configuration

Notifications Logging / Scripting console Description

drag & drop
 Standardized XSD and 

XML representations of any 
device allow for generic 
configuration and control



A homogenous software framework with scientific computing as integral part

A bit more on scientific computing 20

Event driven data processing pipeline

CPU/GPU image processing utilities

GUI components for data visualization 
and pipeline control 

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Create workflows of modular components 21

Burkhard Heisen (WP76)

A conceptual SPB instrument workflow:

Taken from: BioFEL User Contribution



A homogenous software framework with scientific computing as integral part

Pipelining of devices – Event driven data transport 22

Device 1 Device 2 Device 3

signalDataAvailable slotDataAvailable

slotSendData signalSendData

[…]

 Data flow is controlled in an event driven manner

 Allow for flowing (streaming) data on a per image basis to minimize memory 
footprint

 Have “adapter devices“ to integrate 3rd party applications “as is”

 Streaming modules can cache data on output channel
• Provides failover if next module does not finish correctly
• Provides fast re-execution of pipeline subsets

 Have possibility of collecting data for applications that need all data at once

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Parallelization as a design consequence 23

Device 1

Device 2

Device 2

Device 2

Device 3

 Device level parallelization, thus transparent to developer

 Devices on different machines: Distributed programming

 Devices on same machine: CPU threads

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Pipeline system integrated in GUI 24

Burkhard Heisen (WP76)

Navigation Custom workflow composition Configuration

Notifications Logging / Scripting console Description

drag & drop

AndorCam

Correct

Correct

Sum

Visualize



A homogenous software framework with scientific computing as integral part

Image processing framework plans 25

Burkhard Heisen (WP76)

 Implementation of standard processing routines 

 Integrate building process for Nvidia CUDA into the framework

 Image classes for both CPU and GPU

 Provide templates for writing specific code on 

CPU or GPU

 Fully functional also under Python

“1 pixel per GPU thread”



A homogenous software framework with scientific computing as integral part

What I have not talked about 26

Burkhard Heisen (WP76)

 Software packaging & installation, dependency maintenance, code&build@home

 Load balancing, broker failover, network access restrictions

 User identification, role base locking systems (e.g. one controller at a time)

 Data provenance (i.e. record what has happened at each stage)

 Details of data management (privacy, aggregation, hdf5, etc.) 

 Hardware synchronization requirements, TCP/IP vs. real-time systems



A homogenous software framework with scientific computing as integral part

Conclusions 27

Burkhard Heisen (WP76)

 It is the aim of XFEL.EU to standardize the way data is stored and processed amongst 
different experiments. This will allow an optimal usage of the available computing hardware 
infrastructure

 XFEL.EU will provide services for data storage as well as data analysis

 XFEL.EU software will be designed to allow simple integration of existing 
algorithm/packages

 The provided services focus on solving general problems like data-flow, configuration, 
project-tracking, logging, parallelization, visualization

 The ultimate goal is to provide a homogenous software landscape to allow fast and 
simple crosstalk between all computing enabled categories (Control, DAQ, Data 
Management and Scientific Computing)



A homogenous software framework with scientific computing as integral part

28

Thank you for your kind attention.

Burkhard Heisen (WP76)



A homogenous software framework with scientific computing as integral part

Slides with more details 29



A homogenous software framework with scientific computing as integral part

Pipelining devices – Large data flows point to point 30

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Device (shared library)

Configuration & 
Self-description
Configuration & 
Self-description

State MachineState Machine

Signals & SlotsSignals & Slots

Configuration & 
Self-description

State Machine

Signals & Slots

Custom 
Code 

Configuration & 
Self-description

State Machine

Signals & Slots

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Configuration & 
Self-description
Configuration & 
Self-description

State MachineState Machine

Signals & SlotsSignals & Slots

Configuration & 
Self-description

State Machine

Signals & Slots

 P2P-Transport: 
TCP/IP, memory, file I/O

 P2P-Connections: 
Established transiently at runtime  
instructed via control information



A homogenous software framework with scientific computing as integral part

Definitions 31

Burkhard Heisen

 What is a Device?
 Functionally: A logical unit that is individually configurable and controllable. 

Can be regarded as a small application performing a specific task (e.g. 
steering a motor or filtering an image)

 Technically: A (c++) class that inherits the device base class
 Architecturally: A device is typically compiled into a shared library (.so/.dll)

 What is a Device-Server?
 Functionally: An executable program that is able to run one or more devices
 Technically: A (c++) class equipped with functions for parsing 

configurations(command-line, DB), loading plugins (devices), starting and stopping 
devices, etc.  

 Architecturally: A device-server is typically compiled into an executable (main)



A homogenous software framework with scientific computing as integral part

32Performance = parallelism = e.g. GPU usage 32

1. Level: Nodes (Computers)
“1 train per node”

2. Level: CPUs
“1 frame per CPU thread”

3. Level: GPUs
“1 pixel per GPU thread”

Experimental data

Train n n + 1 n + 2

Burkhard Heisen



A homogenous software framework with scientific computing as integral part

Splitting communication: Topics 33

Burkhard Heisen

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Device (shared library)

Configuration & 
Self-description
Configuration & 
Self-description

State MachineState Machine

Signals & SlotsSignals & Slots

Configuration & 
Self-description

State Machine

Signals & Slots

Custom 
Code 

Configuration & 
Self-description

State Machine

Signals & Slots

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Configuration & 
Self-description
Configuration & 
Self-description

State MachineState Machine

Signals & SlotsSignals & Slots

Configuration & 
Self-description

State Machine

Signals & Slots

Message Broker
(Event Loop)



A homogenous software framework with scientific computing as integral part

Scale communication: Load balancing 34

Burkhard Heisen

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Device (shared library)

Configuration & 
Self-description
Configuration & 
Self-description

State MachineState Machine

Signals & SlotsSignals & Slots

Configuration & 
Self-description

State Machine

Signals & Slots

Custom 
Code 

Configuration & 
Self-description

State Machine

Signals & Slots

Device-Server (executable)Device-Server (executable)Device-Server (executable)

Configuration & 
Self-description
Configuration & 
Self-description

State MachineState Machine

Signals & SlotsSignals & Slots

Configuration & 
Self-description

State Machine

Signals & Slots

Message Broker Cluster
(Event Loop)



A homogenous software framework with scientific computing as integral part

Interesting devices: The kernel device 35

Burkhard Heisen

 First device to be started in the system

 Connected to one ore more DBs (user, cable, etc…)

 Serves as a name server for all other device-servers registering into the system 

 Tracks all connects/disconnect requests:

a) allows for user-based access control on devices (e.g. locking mechanisms)

b) serves as watch-dog for lost connections, issues notifications/re-connects

c) can be queried to provide selected connect information (e.g. for graphical displays)

 Knows the geographical location of each device-server (through cable DB)

 Keeps history about all information of the (control-)system

 May technically split into sub-devices for load balancing reasons

Kernel

User  DB

Cable DB



A homogenous software framework with scientific computing as integral part

Interesting devices: The BeckhoffCom Device 36

Burkhard Heisen

Com
Dev

Motor1 Motor2 Pump1

PLC

Motor1 Motor2 Pump1

Tcp

Gather/Scatter

Motor1/signalPlcWrite --- ComDev/slotPlcWrite

ComDev/signalPlcRead --- Motor1/slotPlcRead

 Beckhoff PLCs can run several hardware 
“pieces”

 Communication is limited to a single 
entry point (PLC server)

 Modularity of different PLC setups should 
be reflected and easily implemented on 
C++ side



A homogenous software framework with scientific computing as integral part

Applications 37

Burkhard Heisen (WP76)

Lifecycle:

Procedural Interactive

app.exe

app

app.exe

app.exe

app

app.exe

?

How to use:

app

show possible startup 
parameters

indicate what can 
be done next

supply startup 
parameters

send events

Static info

Dynamic info



A homogenous software framework with scientific computing as integral part

The Device – A standardized application 38

Burkhard Heisen (WP76)

static expectedParameters:
 Developer defines needed/available attributes (input/output channels, 

program parameters)
 He decides when attributes can be used (startup only, interactively*) and 

how (read/write flags)
 For each attribute/command the developer adds as much additional 

description as possible

configure:
 This function is called only once at startup
 Provides (validated) access to all above described attributes

run:
 This function is called once after configure 
 Procedural: Write any code and it will execute here
 Interactive: Start the programFlow which blocks the application here, 

custom code must be written above defined state entries/exits or actions

static programFlow*:
 Developer defines how the application can behave if used interactively
 He defines states, events, actions, and a flow-table showing what 

happens when

onStateA_Entry** (onStateA_Exit**):
 Hook as defined in programFlow

onActionX**:
 Hook as defined in programFlow



A homogenous software framework with scientific computing as integral part

Current status of the toolkit 39

Burkhard Heisen

Factories Type 
introspection Configurations Logging

Plugins Network 
services Messaging Signal/slot

IO interfaces FSM Python 
integration GUI

Databases Image 
processing Not implemented Implemented



A homogenous software framework with scientific computing as integral part

Our extension: Cross-network Signals & Slots 40

Burkhard Heisen

Technical realization Qt CNSS

Declaration of Signals/Slots
Before compile time (moc-
tool), no static or global 
slots

At runtime, static and global 
slots are possible

class Motor : public QObject {

Q_OBJECT

signals:
void move(int);

public slots:
void onMove(int);

};

class Motor : public SignalSlotable {

Motor() {
SIGNAL1(“move”, int)
SLOT1(onMove, int)

}

void onMove(const int&);

};Qt CNSS



A homogenous software framework with scientific computing as integral part

Our extension: Cross-network Signals & Slots 41

Burkhard Heisen

Technical realization Qt CNSS

Declaration of Signals/Slots
Before compile time (moc-
tool), no static or global 
slots

At runtime, static and global 
slots are possible

Connection
Source and Target are 
limited to object instances 
(pointers)

Source and Target can be 
on different 
applications/platforms 
(hostId/instanceId)

That* that = new That();

//      src signal        tgt slot
connect(this, SIGNAL(move(int)), that, SLOT(onMove(int)));

//      src signal       tgt slot
connect(“”, “move‐INT32”, “ds1/m1”, “onMove‐INT32”);

// Or:     signal             slot
connect(“move‐INT32”, “ds1/m1/onMove‐INT32”);

Qt

CNSS



A homogenous software framework with scientific computing as integral part

Our extension: Cross-network Signals & Slots 42

Burkhard Heisen

Technical realization Qt CNSS

Declaration of Signals/Slots
Before compile time (moc-
tool), no static or global 
slots

At runtime, static and global 
slots are possible

Connection
Source and Target are 
limited to object instances 
(pointers)

Source and Target can be 
on different 
applications/platforms 
(hostId/instanceId)

Emit

Typically blocks, multiple
slots are called sequentially
(synchronous & event-
driven)

Never blocks, multiple slots 
are called concurrently 
(asynchronous & event-
driven)

// Blocks until slot execution
emit move(7);

// Immediately returns
emit(“move”, 7);

CNSSQt



A homogenous software framework with scientific computing as integral part

Our extension: Cross-network Signals & Slots 43

Burkhard Heisen

Technical realization Qt CNSS

Declaration of Signals/Slots
Before compile time (moc-
tool), no static or global 
slots

At runtime, static and global 
slots are possible

Connection
Source and Target are 
limited to object instances 
(pointers)

Source and Target can be 
on different 
applications/platforms 
(hostId/instanceId)

Emit

Typically blocks, multiple
slots are called sequentially
(synchronous & event-
driven)

Never blocks, multiple slots 
are called concurrently 
(asynchronous & event-
driven)

Event propagation Direct function calls (FIFO 
array of function pointers)

Events are MOM messages 
(message-queue servers as 
event stack)



A homogenous software framework with scientific computing as integral part

Flow-Control – Again, reusing a very successful concept 44

Burkhard Heisen

Structure program flow using Boost’s: MSM (meta-state-machine)

 State Machine: the life cycle of a thing. It is made of states, transitions and processes incoming
events.

 State: a stage in the life cycle of a state machine. A state (like a submachine) can have an entry and
exit behaviors

 Event: an incident provoking (or not) a reaction of the state machine

 Transition: a specification of how a state machine reacts to an event. It specifies a source state,
the event triggering the transition, the target state (which will become the newly active state if the
transition is triggered), guard and actions

 Action: an operation executed during the triggering of the transition

 Guard: a boolean operation being able to prevent the triggering of a transition which would
otherwise fire

 Transition Table: representation of a state machine. A state machine diagram is a graphical, but
incomplete representation of the same model. A transition table, on the other hand, is a complete
representation



A homogenous software framework with scientific computing as integral part

Advantages of thinking in Signals & Slots 45

Burkhard Heisen

 Decoupling of the trigger of an action (signal) from the code that handles it 
(one or more slots)

 Simple expression of 1 x 1, 1 x N, N x 1 and N x N relationships

 Strictly event-driven system can be implemented (no polling needed)

 Developers are forced to implement to interfaces (signals and slots) in their 
components. This inherently structures and conventionalizes the whole 
communication layer

 Components are highly reusable and allow for composition/nesting



A homogenous software framework with scientific computing as integral part

Flow-Control 46

Burkhard Heisen

 The communication is asynchronous and event-driven
- Any slot may be called at any time without having influence on this
- Different slots may be even called concurrently

 Sometimes we need some sequencing or synchronous behavior
- E.g. The motor should move first to target position before I want to reconfigure the velocity
- A request response pattern is needed and an error should be triggered if no one answers

SynchronousAsynchronous

Event Driven

Scheduled

Event Driven 
Synchronous

Event Driven 
Asynchronous

Scheduled 
Asynchronous

Scheduled 
Synchronous

Data Polling Periodic services

Alarms Request/Response



A homogenous software framework with scientific computing as integral part

AllOkState

Flow control – Using finite state machines 47

Burkhard Heisen

Compute Device State Machine

ReadyState

RunningState

Source State Event Target State Action Guard

AllOkState ErrorFoundEvent ErrorState ErrorFoundAction none

ErrorState EndErrorEvent AllOkState EndErrorAction none

Source State Event Target State Action Guard

ReadyState ReconfigureEvent None ReconfigureAction IsValidReconfiguration

ReadyState ComputeEvent RunningState ComputeAction None

RunningState PauseEvent PausedState PauseAction None

RunningState FinishedEvent FinishedState FinishAction None

AllOkState

StateMachine

PausedState

AbortedStateFinishedState

ErrorState



A homogenous software framework with scientific computing as integral part

Flow control – Using finite state machines 48

Burkhard Heisen

SlitMachine

AllOkState
ErrorState

StandbyState

MovingState

ConfigureEvent(Config)

MoveGapEvent(int)
StopEvent()

ErrorFoundEvent(string,string)

EndErrorEvent()

Source State Event Target State Action Guard

AllOkState ErrorFoundEvent ErrorState ErrorFoundAction none

ErrorState EndErrorEvent AllOkState EndErrorAction none

Source State Event Target State Action Guard

StandbyState MoveGapEvent MovingState MoveGapAction none

StandbyState MoveOffsetEvent MovingState MoveOffsetAction none

StandbyState ConfigureEvent none ConfigureAction none

MovingState StopEvent StandbyState StopAction NoMotorMovesGuard

MoveOffsetEvent(int)

AllOkState = 

SlitMachine = 



A homogenous software framework with scientific computing as integral part

// AllOkState Machine
struct AllOkStateTransitionTable : mpl::vector<
//     SrcState Event           TgtState Action         Guard
Row< StandbyState, MoveGapEvent , MovingState , MoveGapAction , none >,
Row< StandbyState, MoveOffsetEvent, MovingState , MoveOffsetAction, none >,
Row< MovingState , StopEvent , StandbyState, StopAction , noMotorMovesGuard > >(){};
//  MachineName, InitialState, Context
FSM_STATE_MACHINE(AllOkState, StandbyState, SlitDevice)

Technical realization in C++ 49

Burkhard Heisen

// Events
FSM_EVENT2(ErrorFoundEvent, errorFoundEvent, string, string)
FSM_EVENT0(EndErrorEvent, endErrorEvent)
FSM_EVENT1(MoveGapEvent, slotMoveGapEvent, int)
FSM_EVENT1(MoveOffsetEvent, slotMoveOffsetEvent, int)
FSM_EVENT0(StopEvent, slotStopEvent)
FSM_EVENT1(ConfigureEvent, slotConfigureEvent, exfel::util::Config)

// States
virtual void standbyStateOnEntry();
virtual void movingStateOnEntry();
FSM_STATE(ErrorState)
FSM_STATE_E(StandbyState, standbyStateOnEntry)
FSM_STATE_E(MovingState, movingStateOnEntry)

// Transition Actions
virtual void errorFoundAction(const string&, const string&);
virtual void endErrorAction();
virtual void stopAction();
virtual void moveGapAction(const int&);
virtual void moveOffsetAction(const int&);
virtual void configureAction(const exfel::util::Config&);
FSM_ACTION2(ErrorFoundAction, errorFoundAction)
FSM_ACTION0(EndErrorAction, endErrorAction)
FSM_ACTION1(MoveGapAction, moveGapAction)
FSM_ACTION1(MoveOffsetAction, moveOffsetAction)
FSM_ACTION0(StopAction, stopAction)
FSM_ACTION1(ConfigureAction, configureAction)

// Guards
bool noMotorMovesGuard();
FSM_GUARD0(NoMotorMovesGuard, noMotorMovesGuard)

// SlitDevice Machine
struct SlitDeviceMachineTransitionTable : mpl::vector<
//    SrcState Event         TgtState Action        Guard
Row< AllOkState, ErrorFoundEvent, ErrorState, ErrorFoundAction, none >,
Row< ErrorState, EndErrorEvent , AllOkState, EndErrorAction , none > >(){};
FSM_TOP_MACHINE(SlitDeviceMachine, AllOkState, SlitDevice)
FSM_STARTUP(SlitDeviceMachine, startStateMachine)

 Reflects the full 
implementation of the 
state machine

 Events that should 
be trigger-able from 
outside are just made 
Slots



A homogenous software framework with scientific computing as integral part

Clip board – copy and paste

 keyword
 keyword

Result headline

Result text, result text, 
result text 

Keyword
1. Keyword
2. Keyword

Headline
Texttext texttext 
texttext texttext 
texttext texttext

Result headline
 result text 
 result text
 result text

Result Headline
 result text 

 result text

Headline
 first level
 second level
 third level

Burkhard Heisen


