Macromolecule Diffractive Imaging Using Imperfect Crystals

Henry Chapman Center for Free-Electron Laser Science DESY and University of Hamburg

XFEL & DESY Users' Meeting, January 2016

X-ray free-electron lasers may enable atomic-resolution imaging of biological macromolecules

Diffraction probes structure

courtesy Katarina Chapman

We perform ab initio image reconstruction with our "Shrinkwrap" algorithm

Single lpartice Srage sports nuous diffraction patterns

Crystals give Bragg spots

								-		-			-								-				-				
					٠		٠						٠	٠	٠	٠		*			٠	٠							
			×							*	÷	÷			٠	÷				÷						*			
	÷		×	*							÷							*	÷	÷						*			
			*	*							*						*	*							*	*			
	4													4	4														
1																													
2	2											1	-	1	1			4										1	
2	2										Ξ.	1	2	2	1	2		2	2										
2	2	0	0	0	2	2	2	2	2	0		2	2	2	2	2	2	0	0	2	2	2	2		0	0	0		
2	2	0	0	0	2	2	2	2	2	0	2	2	1	1	2	2	2	0	0	2	2	2	2	2	0	0	0	2	
2	2	2	2	0	1		2	2	2	2	2	2	2	2	2	2	2	0	2	2	2		2	2	0	2	2	2	
2	2	2	2	2	1	2			2	2	2	2	1	1	1	2	2	2	2	2	2	2	2		2	2	2	2	
			1	1							1								2					1	1	1	1		
	1												•		•		•									1	1		
•	1										•	•	•	•	•		•		•			•					*		
•	*		*	*						*	*	*	•	•	•	*		*	*							*	*		
•		*	*	*				*	*	*	*	*		٠	٠	*	*	*	*	*	•				*	*	*		
•	*	*	*	*	*	*		*		*	*	٠		٠		٠	*	*	*	*		*	*	*	*	*	*		
•	*	*	*			*			٠	*	*	٠		•	•	٠		*	٠	*		*	*		*	*	*		1
٠			*								*	٠	•	٠	٠	-5		*	٠	•	•	•				*	*		
٠	٠					•	•						٠	٠		٠						٠	٠						1
٠	٠													٠															
	٠	*	*							*	*	*						*	*		٠				*	*			
			*							*	×	*	٠	٠			×	*	*		٠		÷		*	×	×		
		×	×	*	*				*	*	*	*	٠	÷				×	×	*	÷		÷	*	*	×	×		
			×	×					*	*	×	*				\mathbf{x}	*	×	×					*	*	×			
											*	٠					*	*								×			

Solution scattering gives single-molecule diffraction, but orientationally averaged

Aligned molecules yield a single-molecule pattern

How well aligned do you need?

photosystem II

 $\Delta \phi = d/w$

 $d = 3\text{\AA}$ $w = 160\text{\AA}$ $\Delta \phi = 1.1^{\circ}$

Even bad crystals should attain the required level of alignment

$$d = 2\pi \sqrt{\langle D^2 \rangle}$$

$$d = 5 \text{\AA}$$

$$\sqrt{\langle D^2 \rangle} = 0.8 \text{\AA}$$

Extended Data Figure 2 | Background corrected diffraction pattern of a photosystem II microcrystal

Kuptiz et al, Nature **513**, 261 (2014)

Even bad crystals should attain the required level of alignment

したととととと ししししししし ししししししし ととととととと しししたとしし ししししししし ししししししし $\langle I(\mathbf{q})\rangle = |f(\mathbf{q})|^2 \exp(-q^2 \sigma^2) + \sum f_i^2 \left(1 - \exp(-q^2 \sigma^2)\right)$

l

 $\sigma^2 = \left\langle D^2 \right\rangle$

Crystal diffraction is sensitive to atomic displacements

Even bad crystals should attain the required level of alignment

$$d = 2\pi \sqrt{\langle D^2 \rangle}$$

$$d = 5 \text{\AA}$$

$$\sqrt{\langle D^2 \rangle} = 0.8 \text{\AA}$$

Extended Data Figure 2 | Background corrected diffraction pattern of a photosystem II microcrystal

Kuptiz et al, Nature **513**, 261 (2014)

You can see a lot just by looking

By averaging thousands of patterns, a strong single molecule diffraction pattern emerges

By averaging thousands of patterns a strong single molecule diffraction pattern emerges

The orientational symmetry of the crystal is preserved, but not the translational symmetry

The rigid-body unit is consistent with the photosystem II dimer

We performed iterative phasing of the "single molecule" diffraction

Phasing pipeline:

- 1. Obtain 4.5 Å refinement from Bragg peaks
- 2. Generate a support
- 3. Iterative phasing to 3.3 Å (using Elser's difference map)
- 4. Improve the molecular model

Real space constraint

Reciprocal space constraint (nth iterate)

support

Elser, JOSA A 20 (2003) Elser & Millane, Acta Cryst A 64 (2008)

$$\tilde{\psi}_{n}'(\mathbf{q}) = \sqrt{\frac{I(\mathbf{q})}{\sum_{g} \left|\tilde{\psi}_{n}(g\mathbf{q})\right|^{2}}} \tilde{\psi}_{n}(\mathbf{q})$$

$$\tilde{\psi}_{n}(g\mathbf{q}) = 1$$

$$\tilde{\psi}_{n}(g\mathbf{q}) = 0$$

$$\dots$$

Kartik Ayyer

Electron density map from Bragg peaks alone (4.5 Å)

The low-resolution support constrains the phases

SCIENCE

Obtained by convolving 4.5 Å MR map with Gaussian of width 4.4 Å (i.e. 8.9 Å resolution)

Electron density map including continuous diffraction

The extended-resolution structure is superior

Higher diffraction sampling — model free phasing

- more reliable structure determination

Resolution not limited by the crystal, just detector extent and shots The best crystal is a "bad" crystal

Number of molecules per shot: $1 \mu m^3 \times 4 / (9.2 \times 10^6 \text{ Å}^3) = 4 \times 10^5$

The extended-resolution structure is superior

Higher diffraction sampling

- More information than required to describe the object
- model free phasing
- more reliable structure determination
- first new phasing since MAD

Resolution not limited by crystal quality, just detector extent and number of shots

Acknowledgements

Kartik Ayyer

Anton Barty

Oleksandr Dominik Yefanov Oberthür

Tom White

Funding:

Valerio Mariani

Lorenzo Galli

F

The phasers

Established by the European Commission

Bundesministerium für Bildung und Forschung

LCLS experiments and analyses are carried out as a large collaboration

CFEL-DESY/UHH	A. Barty, K. Ayyer, O. Yefanov, D. Oberthür, L. Galli, V. Mariani, K. Dörner, M. Metz, X. L. Pauraj, K. Beyerlein, I. Sarrou, T. White, L. Gumprecht, S. Bajt, M. Barthelmess, C. Gati, M. Heymann, C. Seuring, A. Morgan, A. Tolstikova, J. Knoska, S. Awel
ASU Biochem	P. Fromme, S. Roy-Chowdhury, S. Basu, J. Coe, C. Conrad, R. Fromme, A. Schaffer, C. Kupitz, J.H. Yang, Y. Zhao, N. Zatsepin, D. Wang, D. James, K. Dörner, D. James,
ASU Physics	J. Spence, D. James, G. Nelson, U. Weierstall,
SLAC	S. Boutet, M. Liang, A. Aquila, M. Hunter, J. Koglin, J. Robinson, and many others
U. Wisconsin	M. Schmidt

K. Ayyer et al. "Macromolecular Diffractive Imaging Using Imperfect Crystals," in press (2016)

