Gas Based Detectors for FEL Photon Diagnostics.

Kai Tiedtke

Satellite Workshop on Photon Beam Diagnostics, 29 Jan. 2015

- Intensity and Beam Position Monitor (GMD) @ FLASH
- Gas-Monitor-Detector for hard X-Rays (XGMD)
 - Radiometric comparison of the XGMD prototype @ SACLA
 - Measurements of the absolute number of photon of LCLS hard
 X-ray line Brand new
- Online spectrometer (OPIS)@ FLASH

Intensity and Beam Position Monitor (GMD) @ FLASH

- Gas-Monitor-Detector for hard X-Rays (XGMD)
 - Radiometric comparison of the XGMD prototype @ SACLA
 - Measurements of the absolute number of photon of LCLS hard X-ray line
- Online spectrometer (OPIS)@ FLASH

Requirements for Intensity and Beam Position Detectors.

- cover full dynamic range: ~ 6 7 orders of magnitude from spontaneous emission to SASE in saturation
- on-line pulse resolved detectors (non-destructive with respect to the beam)
- low degradation under radiant exposure by FEL beam with a peak power of few GW; high linearity
- ultra-high vacuum compatibility

No commercial detectors available!

The *Atomic Photoionization Process* is a perfect candidate for nondestructive, pulse-resolved photon metrology tools.

Gas-monitor detectors for online intensity and beam position monitoring.

Equation behind the Gas-Monitor Detector.

Number of particles detected (electrons or ions). Average photoionization charge needed **Quantum Efficiency** to evaluate. $= N_{\text{photon}} \cdot \sigma(\hbar\omega) \cdot z \cdot \eta \cdot n = N_{\text{photon}} \cdot Q.E.(\hbar\omega)$ Atomic Gas Density (requires temperature **Cross Section** and pressure info) **Detection Efficiency** Charge accumulated **Detector Acceptance Length** by the detector particle Mean ion charge **Elementary charge ELMHOLTZ** Kai Tiedtke | Gas Based Detectors for FEL Photon Diagnostics | 2015-01-29 | Page 6 GEMEINSCHAFT

FLASH GMD for the EUV energy range

Beam position monitor

ion signal (position) electron signal (position) electron signal (intensity)

Accuracy for on-line measurements of relative beam positions: ~ 20 μm

The BPM information can be used for a machine feedback in order to stabilise the beam

- Radiometric comparison of the XGMD prototype @ SACLA
- Measurements of the absolute number of photon of LCLS hard
 X-ray line Brand new
- Online spectrometer (OPIS)@ FLASH

Missing photoionization cross section data and ion mean charged values for the hard X-ray regime.

lon mean charge

In the framework of a German–Russian BMBF project and in collaboration with the PTB we measured the photoionization cross sections and mean charge values up to 30 keV at the VUV undulator beamline of MLS, the four crystal monochromator beamline (FCM), and the BAM line in 2012.

- Photon energy range: up to 20 keV
- Uncertainty for the pulse energy: <10 %
- Time resolution: < 200 ns

MHOLT7

GEMEINSCHAFT

- Operating pressure: 10⁻⁶ mbar 10⁻⁴ mbar
- Presently we are building 6 XGM for XFEL and 1 for PSI
- High extraction voltage of up to 20 kV has to be applied to prevent detection of highly energetic photoelectrons by the ion detector.

- Photon energy range: up to 20 keV
- Uncertainty for the pulse energy: <10 %
- Time resolution: < 200 ns

MHOLT7

GEMEINSCHAFT

- Operating pressure: 10⁻⁶ mbar 10⁻⁴ mbar
- Presently we are building 6 XGM for XFEL and 1 for PSI
- High extraction voltage of up to 20 kV has to be applied to prevent detection of highly energetic photoelectrons by the ion detector.

- It's a giant multiplier with 20cmx3cm open area
- CuBeO dynodes own design
- Gain: 10⁷
- Split electrode to measure beam position
- Robust

HELMHOLTZ

GEMEINSCHAFT

• Operating pressure: 10⁻⁸ mbar – 10⁻⁴ mbar

 Relative uncertainty (pulse to pulse): < 1 % (for more than 10¹⁰ photon per pulse)

- Split electrode to measure beam position
- Robust

HELMHOLTZ

GEMEINSCHAFT

Operating pressure: 10^{-8} mbar – 10^{-4} mbar

10¹⁰ photon per pulse)

Comparison between the XGMD pulse energy monitor with a cryogenic radiometer of AIST at SACLA

by DESY/PTB and RIKEN/AIST November 21-23, 2011

Repetition rate : 10Hz Pulse duration : 20fs Peak power : 5GW

TABLE I. Average pulse energy of SACLA for different photon energies as measured with the CR and the XGMD and calibration coefficient of the SACLA BPM.

Photon	Average energy	e pulse γ (μJ)	XGMD to	BPM spectral		
(keV)	CR	XGMD	ratio	(µC/J)		
4.4	32.26 ± 0.35	32.9 ± 2.0	1.020 ± 0.061	7.07 ± 0.21		
5.8	104.2 ± 1.3	106.6 ± 6.1	1.023 ± 0.060	19.69 ± 0.73		
9.6	95.3 ± 2.3	93.9 ± 6.1	0.985 ± 0.068	22.68 ± 0.79		
13.6	42.2 ± 1.1	40.8 ± 2.9	0.967 ± 0.072	13.59 ± 0.80		
16.8	0.96 ± 0.03	•••		9.36 ± 0.58		

XGMD : uncertainties ~6%

ELMHOLTZ

GEMEINSCHAFT

Radiometer : uncertainties 1.1%~3.1% - operated by liquid helium at 4.2K

M. Kato, T. Tanaka, T. Kurosawa, N. Saito, M. Richter, A.A. Sorokin, K. Tiedtke, T. Kudo, K. Tono, M. Yabashi, T. Ishikawa, *Pulse energy measurement at the hard x-ray laser in Japan,* Appl. Phys. Lett. 101, 023503 (2012)

Measurements of the absolute number of photon of LCLS hard X-ray line

by DESY/PTB and LCLS/AIST January 21-24, 2015

Measurement of the absolute number of photon of LCLS pulses with an XGMD

In-house Development

Collaboration

- Aymeric Robert
- Sanghoon Song
- Marcin Sikorski
- Roberto Alonso-Mori
- Diling Zhu
- Yiping Feng
- HXR staff
- Gabriella Carini : Detector
- Stefan Moeller : SXR
- Mark Hunter : CXI
- Hae Ja Lee : MEC

XGMD

- Kai Tiedtke : DESY Kai.Tiedtke@desy.de
- Ulf <u>Fini</u> : DESY ulf.fini.jastrow@desy.de
- Mathias Richter :PTB Mathias.Richter@ptb.de

Radiometer

- Murakami <u>Toshiyuki:RIKEN</u> SPring-8 <u>toshiyuki.murakami@riken.jp</u>
- Owada Shigeki: RIKEN SPring-8 osigeki@spring8.or.jp
- Tanaka Takahiro: AIST takahiro-tanaka@aist.go.jp
- Kato Masahiro: AIST <u>masahiro-katou@aist.go.jp</u>

Measurements of the absolute number of photon of LCLS hard X-ray line

by DESY/PTB and LCLS/AIST January 21-24, 2015

-SLAC

Evaluate the absolute number of photon of LCLS hard X-ray line as a function of X-ray energy and operation mode of the machine

- 1. Transmission of the hard X-ray line (HOMS, other)
- 2. Cross Calibration of various Intensity monitor (XGMD, Radiometer, IPM, <u>kapton</u> monitor, laser power meter)
- 3. Brilliance

DESY

Measurements of the absolute number of photon of LCLS hard X-ray line – Preliminary results

by DESY/PTB and LCLS/AIST January 21-24, 2015

	9.0 keV (mJ)	9.0 keV (photons/pulse)	Run	1st try	T (%)		XGMD (uJ)	C (uW)	after correcting factor (/120*1.37), uJ Ra	atio (XGMD/C
E(XGMD), mJ	1.03	7.14E+11	170	Vac+Kapton	4.1	XPP att	36.5	3090	35.28	1.03
E(gas), mJ	2.30	1.60E+12	171	Vac+Kapton	1	XPP att	7.25	660	7.54	0.96
T, %	45%		172	Vac+Kapton	2	XPP att	15	1300	14.84	1.01
T(estimated), %	46%		173	Vac+Kapton	3	XPP att	22.4	1920	21.92	1.02
ratio(T/Testimated)	0.97		174	Vac+Kapton	5	XPP att	52.1	4380	50.01	1.04
			175	Vac+Kapton	6	XPP att	65.1	5470	62.45	1.04
			176	Vac+Kapton	7.5	XPP att	83.3	7020	80.15	1.04
			177	Vac+Kapton	9.1	XPP att	107.5	8960	102.29	1.05

9.0 keV

	6 keV (mJ)	6 keV (photons/pulse)	correctio	on factor for 6 ke	eV		0.0 10	U V			
E(XGMD), mJ	0.246	2.56E+11	1.00/(ga	sTransmission(('Air',0.116,	6)*Transmiss	ion('C*',100e-6*2	2,6)*Trans	mission('C22H10N2O	5',75e-6*2,6,1.4))Out[120]: 3.016	98544545632
E(gas), mJ	1.42	1.48E+12									
Г, %	17.3%		Run	condition	T (%)		XGMD (uJ)	C (uW)		after correcting factor (/120*3.01	Ratio (XGMD/C)
F(estimated), %	16.3%		185	Vac+Kapton	100	XPP att	245.6	9300		233.82	1.05
atio(T/Testimate	1.06		186	Vac+Kapton	52	XPP att	120.7	4820		121.18	1.00
			187	Vac+Kapton	28	XPP att	50.8	2250		56.57	0.90
			188	Vac+Kapton	15	YPP att	25.5	1340		33.69	0.76
			189	Vac+Kapton	7.7	>PP att	15.5	1000		25.14	0.62
			190	Vac+Kapton	4	XPP att	7.5	690		17.35	0.43
			191	Vac+Kapton	2	PP att	3.2	530		13.33	0.24
			192	Vac+Kapton	28	XPP att	50.8	1700	add C* window, 3.84	54.40	1.97

Contribution from higher harmonics

- Intensity and Beam Position Monitor (GMD) @ FLASH
- Gas-Monitor-Detector for hard X-Rays (XGMD)
 - Radiometric comparison of the XGMD prototype @ SACLA
 - Measurements of the absolute number of photon of LCLS hard
 X-ray line
- Online spectrometer (OPIS)@ FLASH

DESY

Online Photoionization Spectrometer.

One can use the lon and Electron TOF data to pinpoint the photon energies.

1 Ion time-of-flight spectrometer open multiplier detector electric fields (1-2kV) to extract photoions

4 Electron time-of-flight spectrometers micro channel plate detectors

 μ -metal chamber $p_{target} < 3 \cdot 10^{-7}hPa$

Transmission: ~100% Signal recording by fast digtizers Capable of multi-bunch operation

OPIS wavelength measurement: center wavelength.

OPIS wavelength measurement: spectral width.

PG Spectrometer

ELMHOLTZ

GEMEINSCHAFT

- Spectral width can be deduced from lines in the energy-converted photoelectron spectra
- So far, information about the spectral distribution is limited

OPIS: ...towards single-shot measurements.

OPIS, PG measurements with Xe @ 11.60nm (25V retarding) 400 shots = 40 seconds

Compare moving average of 20 FEL shots: PG : mean value of 20 single shot WL-values OPIS: WL determination from 20-shot average spectrum

Including OPIS correction by $\Delta \lambda = -0.028$ nm derived from Auger line analysis

GEMEINSCHAFT

A Final Comparison (for FLASH) .

	E-TOF	I-TOF
Speed of measurement	Single shot capability (good signal quality conditions needed)	Single shot capability throughout the FLASH wavelength range
Uncertainty of wavelength measurement	0.05 nm Intrinsic calibration by means of Auger lines	0.1nm -0.4 nm due to the uncertainty of partial cross section data?
Expected "bonus" information	Spectral distribution Higher harmonics	-
Robustness	Sensitive to electric and magnetic fields, beam stability	Like a rock

DES

The XGM pulse energy monitor:

- Perfect agreement with cryogenic radiometer in the hard X-ray regime
- HAMP multiplier provides a huge dynamic range
- we already started the assembly of 7 devices for XFEL and SwissFEL

The OPIS Online spectrometer :

- characterized and calibrated in the whole wavelength range of FLASH during the last year
- Reliable spectrometer for FLASH 2

But we have to...

• improve its shot-to-shot capabilty

Acknowledgments

Many thanks to:

A. Gottwald, M. Krumrey, and M. Richter

Physico-Technical S. Bobashev

SwissFEL P. Juranic, L. Pattey, and R. Abela

M. Yabashi, K. Tono, T. Kudo, and T. Ishikawa

A. Robert, S. Song, M. Sikorski, R. Alonso-Mori, D. Zhu, Y. Feng, G. Carini, S. Moeller, and M. Hunter

AIST: N. Saito, M. Kato, T. Tanaka, and T. Kurosawa

and our collaborators from the European XFEL company who funded parts this work

S. Molodtsov, T. Tschentscher, J. Grünert, W. Freund, and J. Buck

Acknowledgments

Many thanks to:

DESY Crew:

A. A. Sorokin, H. Kühn, S. Bonfigt, M. Brachmanski, P. Bonfigt, M. Braune, L. Tiedtke, F. Jastrow, S. Kreis, Y. Bican, and B. Keitel

Thanks

17

OPIS: ...towards single-shot measurements.

OPIS, PG measurements with Xe @ 11.60nm (25V retarding)

HELMHOLTZ

Kai Tiedtke | Gas Based Detectors for FEL Photon Diagnostics | 2015-01-29 | Page 29