Wigner distribution measurement of the spatial coherence properties of FLASH

Tobias Mey

Laser-Laboratorium Göttingen e.V. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen

EUV wavefront sensor

EUV wavefront sensor

EUV wavefront sensor

Motivation

Laser-Laboratorium Göttingen e.V.

Decreasing coherence

[3] H. N. Chapman *et al.*, "Femtosecond diffractive imaging with a soft-X-ray free-electron laser," Nature Phys. **2**, 839-843 (2006) [4] M. M. Seibert *et al.*, "Single mimivirus particles intercepted and imaged with an X-ray laser," Nature **470**, 78-82 (2011)

[5] B. Chen et al., "Diffraction imaging: The limits of partial coherence," Phys. Rev. B 86, 235401 (2012)

Coherence

Laser-Laboratorium Göttingen e.V.

Mutual coherence function

$$\Gamma(\vec{x},\vec{s}) = \langle E(\vec{x}_1,t) \cdot E^*(\vec{x}_2,t) \rangle$$

 $= \langle E(\vec{x} - \vec{s}/2, t) \cdot E^*(\vec{x} + \vec{s}/2, t) \rangle$

Global degree of coherence $K = \frac{\iint \Gamma(\vec{x}, \vec{s})^2 d\vec{x} d\vec{s}}{\left(\iint \Gamma(\vec{x}, 0) d\vec{x}\right)^2}$

 \rightarrow required for interference effects

Laser-Laboratorium Göttingen e.V.

Interference of elementary waves $\rightarrow \gamma(\vec{x}, \vec{s})$

Coherence

Coherence

_aser-Laboratorium Göttingen e.V.

[7] A. Singer et al., "Spatial and temporal cohere

Wigner distribution function

Wigner distribution function

Gaussian Schell-model

Gaussian Schell-model

Gaussian Schell-model

Caustic scan

FEL Strahl Fokus Ebene x y z Ellipsoid Spiegel Phosphor Schirm Mikroskop 10x CCD Kamera

FLASH

Wavelength	24.7 nm	
Pulse energy	35 µJ	
Repetition rate	10 Hz	
Camera		
Eff. pixel size	0.645µm	
Exposure time	1.5s	

Caustic scan

FEL Strahl Fokus Ebene x y z Ellipsoid Spiegel Phosphor Schirm Mikroskop 10x CCD Kamera

Wigner distribution

Laser-Laboratorium Göttingen e.V.

[9] A. Torre, *Linear ray and wave optics in phase space*, Elsevier B.V. Netherlands (2005)

Wigner distribution

Laser-Laboratorium Göttingen e.V.

[10] T. Mey et al., "Wigner distribution measurements of the spatial coherence properties of the free-electron laser FLASH," Opt. Expr. 22, 16571-16584 (2014)

Wigner distribution

	Wavelength	Beam diameter	Coherence length	Global degree of
	λ [nm]	d_x / d_y [µm]	l_x / l_y [µm]	coherence K
Wigner [10]	24.7	67 / 53	5.5 / 7.2	0.032
Double pinhole [7]	8.0	17 / 17	6.2 / 8.7	0.42

[7] A. Singer et al., "Spatial and temporal coherence properties of single free-electron laser pulses," Opt. Expr. 20, 17480-17495 (2012)

[10] T. Mey *et al.*, "Wigner distribution measurements of the spatial coherence properties of the free-electron laser FLASH," Opt. Expr. **22**, 16571-16584 (2014)

Coherence properties

- [7] A. Singer et al., Opt. Expr. 20, 17480-17495 (2012)
- [10] T. Mey et al., Opt. Expr. 22, 16571-16584 (2014)
- [11] A. Singer et al., Phys. Rev. Lett. 101, 254801 (2008)
- [12] A. Singer et al., Phys. Rev. Lett. 111, 034802 (2013)
- [13] V. Hilbert et al., Appl. Phys. Lett. 105, 101102 (2014)

Thanks to...

Optics/Short Wavelengths

Dr. Klaus Mann Dr. Bernd Schäfer

Dr. Barbara Keitel Dr. Marion Kuhlmann Dr. Elke Plönjes-Palm

. . .

...and to you for your kind attention!

Saturation effects

4D - Wigner distribution

4D - Wigner distribution

[7] A. Torre, *Linear ray and wave optics in phase space*, Elsevier B.V. Netherlands (2005)

[12] T. Mey, "Measurement of the Wigner distribution function of non-separable laser beams employing a toroidal mirror," New J. Phys. **16**, 123042 (2014)

4D - Wigner distribution

[7] A. Torre, *Linear ray and wave optics in phase space*, Elsevier B.V. Netherlands (2005)

[12] T. Mey, "Measurement of the Wigner distribution function of non-separable laser beams employing a toroidal mirror," New J. Phys. **16**, 123042 (2014)

29

Brillanz

Funktionsprinzip FEL

Streifen durch Spiegel

Laser-Laboratorium Göttingen e.V.

Both 10mm apertures in tunnel, 193nm Al filter

with surface residual errors on EM:

-0.4 -0.2 00 02 04

Liubov Samoylova, Sep 2014

DESY

FLASH - Wigner-Verteilung

_aser-

DESY

34

_aser-

FLASH - Wigner-Verteilung

FLASH - Wigner-Verteilung

Fluktuationen FLASH - Schwerpunkt

Laser-Laboratorium Göttingen e.V.

0

0

0

6

0

36

Fluktuationen FLASH - Durchmesser

_aser-Laboratorium Göttingen e.V.

O

0

0

100

0

0

4.0

0

98

37

0

Fluktuationen FLASH - Kohärenz

$$K = \frac{16\lambda^2}{\pi^2} \cdot \frac{1}{d_{0,x} d_{0,y} \theta_x \theta_y}$$

$$\Delta K = \sqrt{\left(\frac{\Delta d_{0,x}}{d_{0,x}}\right)^2 + \left(\frac{\Delta d_{0,y}}{d_{0,y}}\right)^2 + \left(\frac{\Delta \theta_x}{\theta_x}\right)^2 + \left(\frac{\Delta \theta_y}{\theta_y}\right)^2} \cdot K$$

Durchmesser/Divergenz	$K \rightarrow 1.5 \cdot K$	$K = 0.048 \pm 0.004$
Kohärenz-Fluktuation	$\Delta K = 0.08 \cdot K$	

