

Wojciech Gawelda

wojciech.gawelda@xfel.eu

FXE Instrument, European XFEL, Hamburg, Germany

Mission: Nuclear, Charge and Spin Dynamics during an ongoing reaction "Elementary Steps in Photochemistry"

Intramolecular Charge Transfer

Ligand Detachment/Association

Solvation Dynamics

Elementary Steps in Charge Transport

What are the fundamental timescales?

XFEL X-ray Spectroscopy

Ultrafast spin conversion: within electron back-transfer time from bpy to metal? No intermediate states detected...

No MLCT signature detected...

→ Need now a ultrafast Spin-Sensitive Tool!!

European XFEI Spin dynamics in Fe(II) complexes Ionization Liquid jet X-ray fluorescence potential spectrometer Valence level Absorption 3p **K**β_{1,3} 2p laser Fluorescence 1s LCLS X-ray pulses Singlet Doublet $K\beta_1$ Triplet Quartet normalized intensity 0.1 Quintet PAD 0.05 0 7045 7040 7055 7060 7065 7070 7050 W. Zhang, et al., Nature 509, 345 (2014) emission energy (eV)

Tracking chemical reactions with ultrafast X-ray spectroscopies and scattering

European

The spectral signature of the intermediate ${}^{3}T_{1,2}$ state(s) should be clearly distinguishable from MLCT and ${}^{5}T_{2}$ spectra

W. Zhang, et al., Nature 509, 345 (2014)

8

Tracking chemical reactions with ultrafast X-ray spectroscopies and scattering

Courtesy: K. Haldrup

European XFEL Users' Meeting 2015, 28-01-2015, Hamburg, Germany Wojciech Gawelda, FXE Instrument, European XFEL, Hamburg, Germany

C. Bressler et al, Faraday Discussions (2014)

10

European Starting to look into solute-solvent interactions... 13 HS fraction, γ_{HS} MLCT 0.4 **SH** 0.2 150 fs W. Zhang et al., Nature 509, 345 (2014) 0 11 HS fraction, γ_{XDS} SO 0.4 -0.5 1.5 0 0.5 time delay (ps) 600 fs 0 XAS XDS XES < 400 fs Δρ < 10 fs kg/m3 2 150 fs 150 fs 800 fs 1100 fs Fe 3 ΔT $0 \ / K$ 2 70 fs < 400 fs 120 fs 150 fs 1100 fs

 $< 10 \, \text{fs}$

2Fe^{III}

¹Fe^{II}

2

1

70 fs

5Fe^{II}

³Fe^{II}

Tracking chemical reactions with ultrafast X-ray spectroscopies and scattering

 $\Delta R_{Fe-N} = 0.2 \text{ Å} \quad \Delta n(H_2O) = -2 \quad \Delta T = 2.3 \text{ K}$

European XFEL Users' Meeting 2015, 28-01-2015, Hamburg, Germany Wojciech Gawelda, FXE Instrument, European XFEL, Hamburg, Germany

-1

0

 $\Delta t / ps$

0

-2

Towards more complex systems

 $PS \rightarrow photosensitizer$

- SD \rightarrow sacrificial donor (electron source)
 - $R \rightarrow Relay$ (electron transporter)
 - $C \rightarrow Catalytic center$

- Light absorption \rightarrow PS
- Electron transfer via PS* from SD
- First redox on R (reduction)
- Further redox from R to C
- C transfers 2 electron to react further with H⁺
- Hydrogen is formed!
- Solvent can be used as an electron donor
- The goal is to use first-row TMs as PS
- Decrease degradation, increase turnover rate
- Use rigid linkers instead of diffusion processes
- Act as an electron relay and reservoir

Detailed understanding of the structure-function relationship is required for optimized molecular photocatalysts in water splitting schemes

Tracking chemical reactions with ultrafast X-ray spectroscopies and scattering

15

XFEL XAS studies in the ps-ns time domain

European XFEL Users' Meeting 2015, 28-01-2015, Hamburg, Germany Wojciech Gawelda, FXE Instrument, European XFEL, Hamburg, Germany

XFEL X-ray Emission Spectroscopy

K α XES for 3d metals \rightarrow direct probe of the number of unpaired electrons \rightarrow oxidation and the total spin moment of the metal

Difference Ka spectra snapshot the time-dependent broadening of the emission

2p3d exchange interaction is weak and yields only the line broadening!

The measured value between the ground and excited state = 0.6 eV (Δ S=3/2, HS state)

S. Canton, et al., accepted Nat. Commun. 2015

XFEL X-ray Diffuse Scattering

О

$$\Delta S_{Calc} = \alpha \Delta S_{Solute} + \Delta T \frac{\partial \Delta S}{\partial T}$$

∆ S (a.u.)

Time (ps)

The negative difference scattering signal at Q=0.5 Å⁻¹ sets in instantaneously

т=2±0.5 ps

The positive and negative difference scattering signals larger Qs, i.e. Q=1.2 and 2.0 Å⁻¹ grow slowly on 15-20 ps timescale

т=12±3 ps

S. Canton, et al., accepted Nat. Commun. 2015

19

Tracking chemical reactions with ultrafast X-ray spectroscopies and scattering

S. Canton, et al., accepted Nat. Commun. 2015

^{European}

Summary: Towards A High-Speed Molecular Camera for tracking chemical reaction dynamics

A Suite of Simultaneous X-Ray Tools available: 20

20

- XAS (w/DAFS)
- Non resonant XES
- Resonant XES (RIXS)
- X-Ray Raman Scattering
- XDS

Please check our posters on Friday: Poster # 90 and #219 FXE instrument Workshop: Tomorrow, 13:30-18:00 CFEL SemRoom III (Bldg. 99)

Acknowledgements

European XFEL Tadesse Assefa

Alexander Britz

Andreas Galler

Wojciech Gawelda

Christian Bressler

Dmitri Khakulin

DTU Physics

Dept. of Chemical Physics

Kristoffer Haldrup Tim Brandt van Dreil Elisa Blasin Asmus Dohn **Martin M. Nielsen** Lund University Sophie Canton Tobias Harlang Jens Uhlig Villy Sundström

Wigner Research Centre for Physics Hungarian Academy of Sciences

György Vankó Dorottya Szemes Zoltán Németh

DESY / CFEL

Hasan Yavas Manuel Harder Leo Chavas Tokushi Sato

SACLA / SPRing-8 Tetsuo Katayama Makina Yabashi

KEK / Tskuba Shunsuke Nozawa Shin-ichi Adachi

AMO Physics Group Argonne National Laboratory Gilles Doumy Anne Marie March Dooshaye Moonishiram Linda Young Stephen H. Southworth

SwissFEL / PSI

Chris Milne Jakub Szlachetko

EPFL / Lausanne Jochen Rittmann Lars Mewes

SLAC/LCLS

Kelly Gaffney Marco Cammarata Henrik Lemke

. . . .

Funding (since 2009): European XFEL DFG (SFB925, TPA4) BMBF (VP302) EU-CRISP CUI Hamburg Uni Hamburg PIER Hamburg IMPRS-UFAST

Thank you for your attention!