

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

P. Beaud

An order parameter concept for ultrafast phase transitions

Authors

Andrin Caviezel Urs Staub Simon Mariager Laurenz Rettig Shih-Wen Huang Jeremy Johnson Milan Radovic Gerhard Ingold

Steven Johnson Christian Dorner Tim Huber Andres Ferrer Teresa Kubacka

Henrik Lemke Matthieu Chollet Dilling Zhu Mike Glownia Martin Sikorski Aymeric Robert

Hiroki Wadati Masao Nakamura Masashi Kawasaki Yoshinori Tokura

Funding

Dynamic interplay between structural and electronic degrees of freedom.

Complex phase diagrams with exciting properties, sensitive to external stimuli (*T*, *p*, *B*, *E*, hv ...).

Motivation of ultrafast x-ray studies

- Study correlations on their relevant time and length scales
- Manipulation of material properties \rightarrow ultrafast phase transitions

Order parameter concept introduced by Landau (1937):

- η is a measure of symmetry breaking in the equilibrium state.
- phase transition characterized by change from $\eta=0$ to $\eta\neq0$ as a function of thermodynamic state variable.

Including long range correlations $\rightarrow \eta \propto (1 - \alpha/\alpha_c)^{\beta}$

- Universality: critical exponents depend on dimension and symmetry, but not on microscopic details of the system.
- Applications in Cosmology, Biology, Economy ...

Thermodynamic concept, breaks down in non-equilibrium. How to describe ultrafast phase transitions?

- Transition metal oxides with perovskite structure, prototype of strongly correlated electron systems
- Exhibit colossal magnetoresistance & insulator-metal transitions.
- Many types of ordering patterns
 - Changes of structural symmetry
 - Modulation of Mn valence
 - Modulation of orientation of occupied e_g orbitals in Mn³⁺
 - Magnetic order

Ground state ($x \approx 0.5$)

- CE-type charge & orbital order Goodenough, Phys. Rev. 100, 555 (1955).
- Jahn-Teller distortion at Mn³⁺ sites leading to a doubling of the unit cell.

must

Strong electron-phonon coupling
→ sensitive to optical excitation.

Photoinduced phase transition

Excitation of Mn³⁺/Mn⁴⁺system drives insulator-to-metal transition:

Fiebig et al., Science 280, 1925 (1998)

Polli et al., Nat. Mater. 6, 643 (2007)

Low fluence

Displacive excitation of coherent optical phonon.

High fluence

Dissapearance of SL peak within 1 ps

 \rightarrow Evidence of ultrafast structural transition.

Beaud et al. PRL 103 155702 (2009); A. Caviezel et al. PRB 87, 205104 (2013).

- **1. Better time resolution** \rightarrow understand structural dynamics.
- **2. High photon flux** \rightarrow time scales of CO & OO melting with resonant XRD.

Sample

Okuyama et al. APL 95, 152502 (2009)

- $Pr_{0.5}Ca_{0.5}MnO_3$, thin film ($d \approx 40$ nm)
- $(011)_c$ -orientation \rightarrow access to CO & OO peaks
- 100 K (nitrogen cryo blower)

Optical pump

- Ti:Saphhire
- 50 fs, 800 nm

X-ray probe

- 50 fs, ~6.55 keV, Si(111) monochromator
- Cornell-SLAC hybrid Pixel Array Detector Herrmann et al. NIM A 718, 550 (2013)

Resonant X-ray diffraction

Site specific information

Diffraction \rightarrow probes long range order Absorption \rightarrow probes electronic system

Resonant XRD at Mn K edge

Possible due to hybridization of Mn 3d and O 2p states Zimmermann et al. PRL 83, 4872,1999

(h k/2 0) \rightarrow structural distortion (0 k/2 0) \rightarrow orbital order & Jahn-Teller (0 k 0) \rightarrow charge order

> Static experiment at 100 K (SLS Material Science beamline)

> > Paul Beaud, European XFEL Users' Meeting, DESY-Hamburg

Time resolution

- Laser/FEL arrival time jitter measured with spectral encoding. Harmand et al. Nat. Photon. 7, 215, 2013
- Tremendous improvement in time resolution and data acquisition efficiency.

- > Superlattice reflections vanish at high fluence, no threshold behavior.
- > Different fluence dependence due to optical birefringence.
- Very fast onset of structural and electronic transition .
- Later dynamics dominated by ~2.5 THz mode, no softening but frequency doubling at high fluence.

must

Charge order

$$I^{0\bar{3}0} = \left| F^{0\bar{3}0} \right|^2 = \left| \eta \right|^2$$

> At early times intensity drops linearly with fluence.

► To quantitatively determine n_c we must account for pump gradient ($\sigma_{800nm} \approx 1/d$):

must

$$\implies \eta_{\text{early}} = \sqrt{1 - \frac{n_0}{n_c}}$$

- n_0 is the initial excitation density.
- phase transition occurs for $n_0 > n_c$.

$$\left|F^{0\overline{3}0}\right|^{2} = \frac{1}{N^{2}} \left|\sum_{i} \sqrt{1 - n_{0}(z_{i})/n_{c}}\right|^{2}$$

Late times:

$$\eta_{\text{late}} = (1 - n_0 / n_c)^{\gamma} \qquad \begin{array}{l} n_c \approx 470(6) \text{ J/cm}^3 \\ \gamma \approx 0.20(2) \end{array}$$

Electron-phonon coupling cools electronic system leading to a partial recovery of CO for $n_0 < n_c$.

 \rightarrow Time dependent order parameter

$$\eta_t(t) = \sqrt{1 - n(t)/n_c}$$

Empirically we get:

$$n(t) = (n_0 - \alpha n_c)e^{-t/\tau} + \alpha n_c$$
$$\alpha = 1 - (1 - n_0/n_c)^{2\gamma}$$

 \rightarrow Striking similarity to Landau result for second order phase transitions.

 \rightarrow Must also describe structural dynamics.

Structural dynamics

Unit cell with 40 atoms, multiple coordinates. \succ Excitation at Mn³⁺ sites \succ isity (a.u. \rightarrow fast collapse of Jahn-Teller distortion \rightarrow chain reaction rearranging the unit cell. 300 500 600 400 Raman Shift (cm⁻¹) Mansouri et al. J. Phys.: Condens. Matter 21 (2009) Mn⁴⁺ Pr/Ca **Jahn-Teller** 343 cm⁻¹ 483 cm⁻¹ 80 cm⁻¹ ? cm⁻¹ 595 cm⁻¹ 227 cm⁻¹ y_1 y_3 y_4 *y*₂

Simplified model of atomic motion using four groups of effective modes.

Similar Landau-type potentials have been used to describe single coordinate systems. Yusupov *et al.* Nat. Phys. 6, 681 (2010); Van Veenendaal, PRB 87, 235118 (2013); Huber *et al.* PRL 113 026401 (2014);.

- Strong coupling \rightarrow lowest frequency in chain dominates late dynamics.
- Atoms overshoot \rightarrow frequency doubling in diffracted signal.

Simulation (structural response only)

Fairly simple description relying on a single time-dependent order parameter captures the essential dynamics down to ~80 fs.

Nat. Mater. 13, 923 (2014).

Summary & outlook

$$\eta_{_t}(t)\! \propto \! (n_{_c}\!-\!n)^{\!eta}$$
 with eta =

 $\beta = \frac{1}{2}$

Decision of SNB to lift enforced

€ – CHF exchange rate.

must

1.20

1.10

1.00

0.90

0.80

0.70

12:00:00

- \rightarrow Improved time resolution
- \rightarrow Polarization control & analysis
- \rightarrow Controlled sample environment
- At SwissFEL we currently build an instrument dedicated to dynamic studies on strongly correlated electron systems.

10:00:00

8:00:00

PAUL SCHERRER INSTITUT

Thank you for your attention!