## **Imaging clusters dynamics**



Thomas Möller, Technische Universität Berlin XFEL-XBSD workshop, Hamburg, January 30, 2014,

### Light induced dynamic with X-ray pulses



## **Two aspects**

- Light induced expansion dynamics
  - Short time scale, fs-ps,
  - Long time scale, ps- ns



• Collective cluster oscillations, fission, fs-ps time scale





#### Beginning of the pulse During the pulse After the pulse **5** fs **50 fs** > 500 fs CICCLICIIO Outer ionisation **Disintegration**, **Single photon** relaxation, Ionization recombination Few electrons are removed from cluster energy, size, Inner ionisation power density Nano plasma formation

I. Cluster dynamics induced by intense x-ray pulses

Experiments Wabnitz et al, Nature 420, 482, Laarmann et al, PRL 92, 143401, PRL 95, 063402(2005)

Theory R. Santra, PRL 91, 233401 (2003), Siedschlag, Rost, PRL 93, 43402 (2004), Ziaja, Phys. Rev. Lett. 102, 205002 (2009

# Simultaneous light scattering and ion spectroscopy on individual clusters FLASH (DESY)



Phys. Rev. Lett. 108, 093401 (2012)

## Morphology of very large xenon cluster

#### **Analysis with 2D-Fourietransform**



New Journal of Physics 14 (2012) 055016

## **Time resolved imaging of exploding clusters**

Study how ultrafast ionization dynamics influence scattering process

• Scattering sensitive to both, changes in electronic and geometric structure



#### **IR pump + FEL probe pulse (LCLS), CAMP** X-rays only Phys. Rev. Lett. 108, 245005 (2012)

## **Experimental layout**





#### IR laser: 50 fsec, 2 mJ, 2•10<sup>15</sup> W/cm<sup>2</sup>



Bryan et al., Nature Physics 2, 379 (2006)

## **XUV pump XUV probe**

FLASH, 93 eV

R<sub>\_</sub>~23 Å

probe

pump

1.2



#### ion spectra

0.8

Time-of-flight (µs)

0.3

0.4

Xe

1.0

Xe<sup>2+</sup>

0.6

Universität Münster, Zacharias BESSY

2 nm Xe clusters, destroyed after ~2 ps

0.5

0.6

0.7

M. Krikunova, et al. J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 105101

### Very long delay: Results from FLASH 93 3V, Comparison with simulations

Timescale: 1000 – 1500 ps - moderate NIR intensities



#### Simulation with Gunnier-aproach

R. De Castro et al, J. Ele. Spectr. Rel. Phen. 166, 21 (2008)





Density fluctuations in an expanding nanoplasma?

With two X-rays pulses at SQS

- First (weak) puls shape of initial cluster
- Second pulse imaging of the cluster dynamics
- surface melting and explosion, fs-time scale
- Cluster expansion, ps time scale

## **Collective oscillations/dynamics in nanoparticles**



Size selected nanoparticles and two/three light pulses

- first (very weak) X-ray pulse
- IR pulse induces vibration by heating
- second X-ray pulse, imaging as a function of delay
- Two x-ray pulses, inital shape of clusters

New regime of cluster dynamics Damping on the nanoscale

## **Parameters wish list**

|                                  | Day 0                          | Nice to have    |
|----------------------------------|--------------------------------|-----------------|
| Experimental techniques          | Scattering / spectroscopy      |                 |
| Source properties                |                                |                 |
| Energy range                     | 500                            | 500 eV- 2000 eV |
| Pulse duration                   | 50 fs or less                  | < 30 fs         |
| bandwidth                        |                                |                 |
| Device properties                |                                |                 |
| Maximum Temporal delay           | 5 ps                           | 30 ps or more   |
| Pulse intensity ratio            | 1:3                            | 1:1-1:50        |
| 2 Colors                         |                                | yes             |
| Symmetric delay around t=0       |                                | no              |
| Spatial separation behind sample |                                |                 |
| Add your suggestions             | Small focal spot, good overlap |                 |

## Acknowledgement

Funding by BMBF and DFG

#### TU Berlin + MPHII @ FLASH



K.H. Meiwes-Broer,

J. Tiggesbäumker, T. Laarmann,

T. Ditmire, J. Hajdu

DESY/ FLASH Team LCLS Team

Cooperation with theory

T. Fennel (Rostock)

U. Saalman, J. Rost (Dresden)

B. Ziaja, R. Santra (CFEL/DESY)

LCLS C. Bostedt S. Schorb,

TU Berlin:

M. Adolph,

D. Rupp,

L. Flückiger

T. Gorkhover

M. Müller

T. Oelze

E. Ovcharenko

M. Sauppe

M.Krikunova

CAMP Team

Sascha Epp,

Lutz Foucar,

Robert Hartmann,

Daniel Rolles,

Artem Rudenko, et al.,

Project leaders:

CAMP @ LCLS

I. Schlichting, L. Strüder, J. Ullrich

And thank you for your attention!