Prospects on stimulated x-ray Raman scattering in the gas phase with XFEL radiation

Jan-Erik Rubensson Uppsala University

- Dilute Samples
- Exotic excitations
- Time-resolved RIXS
- Multiphoton excitation-RIXS
- Stimulated RIXS

Molecular Materials and Processes

El Dorado also for linear AMO

Dilute samples require more intensity

From http://www.iiserpune.ac.in/~arnabm/

Water in acetonitrile K. Lange et al., Angew. Chem. Int. Ed. 2011, 50, 10621–10625

Water in acetonitrile K. Lange et al., Angew. Chem. Int. Ed. 2011, 50, 10621–10625

Exotic Excitations require intensity: Chemical Sensitivity of Double Core Hole Resonances

Investigation for lithium compounds in the thesis of Marcus Agåker, PRL93, 016404 (2004), PRB73, 245111 (2006), PRB74, 241105 (2006), PRB75 045112 (2007)

Scanning two-photon resonances

Collaboration with Matjaz Zitnik et al., JSI Ljubljana, the FERMI crew, UPMC Paris, MAX IV, Lund, European XFEL, Hamburg

Classically: low fluorescence yield, almost isotropic emission....

Stimulated RIXS "promises" a brilliant source of secondary emission loaded with physical information:

End of compromises between count rate and resolution!

Photon-in-photon-out: spectroscopic technique maintaining high resolution and selectivity in high fields

Conventional spectrometer in the forward direction--- no compromises:

- small slit
- high groove density
- high orders
- large radius

Alternative beamline-type schemes, where eventually the slope errors of the optics set the limit.

Pulse compression, Burnham-Chiao modulation and four wave mixing

Outline of 1-D Imaging RIXS Spectrometer

Pump-probe RIXS

For the split and delay

- Dynamics within the core-hole lifetime
- ♦ Stimulation-pulse delayed and energetically displaced up to around 30 eV.
- \diamond Delay scan up to around 10 fs.
- Ultrafast energy dissipation in large (bio-relevant) molecules, following core ionization.
- \diamond Delay scan up to around 150 fs.
- For core-hole induced chemistry, delays on the picosecond scale is interesting. On long timescales primarily "conventional" laser pump is relevant

Pump-probe experiments with RIXS

Parameters Wish List

	Day 0	Nice to have
Experimental techniques	Time-resolved and stiumulated RIXS	
Source properties		
Energy range	From N K and up to (say) Al K	Down to C K
Pulse duration	Shorter than typical core hole lifetimes (a few fs) For non-linear processes down to around 1 fs.	
bandwidth	As small bandwidth as possible, without compromising time resolution.	Heisenberg limit would be nice
Device properties		
Maximum Temporal delay	In the range of the core-hole decay times; 0-10 fs. For energy dissipation in large biorelevant molecules following core ionization up to 150 fs. Longer delays are not relevant for X-ray pump/X-ray probe measurements.	
Pulse intensity ratio	Controllable but difficult to predict: A guess is from 50/50 to 1/99	
2 Colors	A difference within a range of 0-30 eV would be sufficient for stimulated RIXS. This is relevant only if the the time delay between the pulses is also controlled.	
Symmetric delay around t=0	Not important	
Spatial separation behind sample	Room to measure spectra in the forward direction.	
Add your suggestions		

Thank you!