

Tailoring the photon beam for non-linear spectroscopy in solids

Martin Beye

Helmholtz-Zentrum Berlin

Institute for Methods and Instrumentation in Synchrotron Radiation Research (G-ISRR)

XBSD for SCS / SQS

Non-Linear Processes

Stimulated Emission

$$\langle g, N | \vec{d} | e, N - 1 \rangle$$

$$P_{stim} = N \sigma \rho_e d$$

Spontaneous Emission

 $\left\langle g,1|\vec{d|}e,0
ight
angle$

 $P_{spon} = N_{vac} \sigma \rho_e d$

Tailoring the photon beam for non-linear spectroscopy in solids

- Needed Photon Parameters
- How to get them from a SASE source
- Possible Experiments

XBSD for SCS / SQS

30.01.2014

Interaction with the core-excited state

70fs pulse 3fs core hole lifetime

XBSD for SCS / SQS

Processes after core excitation

XBSD for SCS / SQS

70fs pulse

3fs core hole lifetime 10fs "Energy loss time" of Auger electron

20 excitations per Auger electron

Short pulses are absolutely crucial:

- to enhance the number of core holes at a given moment
- to avoid probing "damage" (valence excitations / plasma)
- to have core holes only in an "unexcited" sample

$$\Delta E \cdot \Delta t \geq 0.44h \approx 1.8 fs \cdot eV$$

Monochromator resolution: (N illuminated lines) Pulse lengthening: $N \cdot \lambda$ (N illuminated lines)

$$\frac{E}{\Delta E} \le N \qquad \Delta E \ge \frac{E}{N}$$

$$\Delta t = N \cdot \frac{\lambda}{c} = \frac{N \cdot h}{E}$$

$$\Delta E \cdot \Delta t \ge \frac{E}{N} \cdot \frac{N \cdot h}{E} = h$$

Monochromatization keeps short pulses,

- when a small number of lines (about 1000) is illuminated
- -> extremely low line density

Split-and-Delay works in energy-time phase-space

- -> ideally independent
- -> XBSD behind monochromator, separate slits for each arm
- -> independent energy / time content
- -> spatial overlap of both beams

XBSD for SCS / SQS

Rohringer et al. Nature 481, 488–491 (2012) Beye et al. Nature 501, 191–194 (2013)

> -gain on top of small signal -small "background" -high possible gain

Same Channel not observable! (satured absorption)

XBSD for SCS / SQS

Weninger et al. PRL 111, 233902 (2013)

-gain on top of big signal (FEL beam)

-maximum gain is splitting ratio

-long overlap of "dump" field and "pump" excited volume restricts geometry

-q-transfer limited through angular separation of beams

-reflectivity from multilayer samples can enable q-transfer

XBSD for SCS / SQS

	Day 0	Nice to have
Experimental Techniques	Anything with spectral resolution before and behind sample	Same shot-to-shot
Source Properties		
Energy Range	C, N, O + transition metal edges (250-1000eV)	full SASE 3 range
Pulse duration	some femtoseconds	<100 as
Bandwidth	<0.5 eV	Fourier limited, tunable, < 0.05 eV
Device Properties		
Maximum Temporal Delay	twice the pulse duration	some ps
Pulse intensity ratio	4:1 - 1:1 tunable	tunable orders of magnitude
2 Colors	crucial, tunable	also different harmonics
Symmetric delay around t=0	yes, if something else is asymmetric	yes
Spatial separation behind sample	tunable angle for q-transfer / separation on detector	
Suggestion 1	Split after mono to manipulate energy content independently	
Suggestion 2	Measure spectrum / intensity in each arm independently	

Thank you for your attention!