

The Spectrocopy & Coherent Scattering (SCS) Scientific Instrument

Andreas Scherz for WP86 European XFEL

SCS Conceptual Design Report

XFEL.EU TR-2013-006

CONCEPTUAL DESIGN REPORT

Scientific Instrument Spectroscopy and Coherent Scattering (SCS)

October 2013

A. Scherz and O. Krupin for the Scientific Instrument SCS (WP86) at European XFEL Imaging station [baseline]
 Coherent diffraction imaging, Spectroscopy
 Small-angle and Bragg diffraction

 Heisenberg RIXS [User Consortium] Study of low energy excitation in liquids and solids

Spokeperson: A. Föhlisch (HZB/Uni Potsdam)

 PES [User Consortium] TR-Photoelectron spectroscopy for a broad range of system

Spokesperson: U. Karlsson (KTH)

XFEL XFEL Photon beam transport system

General Soft X-Ray radiation parameters

Pulse widths	2 – 100 fs	Coherence time	0.3 – 1.8 fs
Pulse energy	0.2 – 11.0 mJ	Bandwidth	0.25 – 0.7 %
Peak power	50 – 120 GW	Number of photons	0.1 – 2 x 10 ¹⁴
Average power	3 – 300 W	Average flux of photons	0.3 – 5.4 x 10 ¹⁸
Beam size	40 – 80 μm	Average brilliance	0.03 – 2.6 x 10 ²⁴
Rep. rate	10 Hz (2700 pulses	in bunch train)	

Integral Components in the conceptual design of SCS

 Afterburner: circular (left, right) and linear (hor, ver) polarization
 Soft x-ray self-seeding short pulse, narrow bandwidth, nearly transform-limited pulses

EuropeanXFELComponents overview

^{29.} January 2014, SCS instrument, Users' meeting 2013, European XFEL Andreas Scherz, WP-86 SCS instrument, European XFEL

XFEL Users' meeting 2014: SCS instrument

XFEL Soft x-ray monochromator (WP-73)

Gratings:

operation near transform limit tunable resolving power

- Low-medium energy resolution (50 l/mm) Resolving power: 3,000-10,000 pulse stretching: 20-70fs @ 800 eV
- High energy resolution (150 l/mm) Resolving power: ~ 40,000 pulse stretching: ~250fs @ 800 eV
- Plane mirror for pink beam operation Resolving power SASE3: 140-400 Resolving power self-seeding: 800 - TBD pulse duration given by source 2-100fs

^{29.} January 2014, SCS instrument, Users' meeting 2013, European XFEL Andreas Scherz, WP-86 SCS instrument, European XFEL

EuropeanXFELComponents overview

XFEL Users' meeting 2014: SCS instrument

European XFEL

XBSD for SCS/SQS at SASE3

30 January 2014, DESY campus, Bldg. 61, University Auditorium, Hamburg

SCS/SQS joint satellite workshop

Programme

14:00	Welcome	S. Molodtsov	XFEL.EU
14:05-16:00	Split Delay Developments at FELs		
14:05	XBSD concept for SASE3 @ XFEL.EU	M. Izquierdo	XFEL.EU
14:20	Design and principle of operation of a Soft X-ray	S. Serkez	DESY
	Self Seeding Monochromator		
14:35	Design and first experiences of the split and delay set-up at LCLS	E. Kukk	Uni Turku
14:55	Beam splitting and delay line system at FERMI@Elettra	N. Mahne	FERMI
15:15	Spectroscopy with two x-ray pulses /	W. Wurth	Uni-Hamburg /
	Tailoring the photon beam for non-linear spectroscopy in solids	M. Beye	HZB
16:00	Coffee Break		
16:15-18:30	Science case and XBSD requirements at XFEL.EU/SASE3		
16:15	Prospects on stimulated x-ray Raman scattering in the gas	N. Rohringer	CFEL /
	phase with XFEL radiation	J.E. Rubensson	Uni Uppsala
17:00	Delay-line XPCS /	G. Grübel	DESY /
	Some thoughts on X-ray pump-probe stimulated Raman scattering	B. Patterson	PSI
17:45	Imaging ultrafast cluster dynamics /	T. Möller	TU Berlin /
	Time resolved coincident Momentum Imaging at XFEL	M.Schoeffler	Uni Frankfurt
18:30-18:45	Discussion/Summary of the XBSD at SASE-3	A. Scherz	XFEL.EU
18:45	Closeout / Adjourn		

XFEL Users' meeting 2014: SCS instrument

XFEL SCS KB bent refocusing optics

KB best refocusing:

Minimum beam size: 1.5x1.5 μm²

Near-focus conditions soft x-rays:

 1.5 - 10µm → 0 - 1.6 x Rayleigh range (Rayleigh length ~ 10 mm)

Out-of-focus by bent mechanism:

Maximum beam size: 1 x 1 mm²

29. January 2014, SCS instrument, Users' meeting 2013, European XFEL Andreas Scherz, WP-86 SCS instrument, European XFEL

XFEL SCS Beam properties at sample

SASE3: 14 GeV, 20 fs pulse

E range [eV]	200-1500	1500-3000
Photons / pulse	1x10 ¹³ (pink) 1x10 ¹¹ (mono-medium) 3x10 ¹⁰ (mono-high)	5x10 ¹² (pink) 5x10 ¹⁰ (mono-medium) 2x10 ⁹ (mono-high)
Peak intensity [W/cm ²]	$1x10^{17}-1x10^{18}$ (pink-focus) $1x10^{14}-1x10^{16}$ (mono-focus) $1x10^{10}-1x10^{11}$ (mono-unfocused)	1x10 ¹⁷ -1x10 ¹⁸ (pink-focus) 5x10 ¹³ -5x10 ¹⁵ (mono-focus) 1x10 ¹⁰ -1x10 ¹¹ (mono-unfocused)
Fluence / pulse [mJ/cm ²]	1x10 ⁷ -1x10 ⁸ (pink-focus) 1x10 ⁵ -1x10 ⁶ (mono-focus) 1-10 (mono-unfocused)	1x10 ⁷ -1x10 ⁸ (pink-focus) 1x10 ⁵ -1x10 ⁶ (mono-focus) 1-10 (mono-unfocused)

XFEL SASE3 experimental floor

XFEL Modular Sample environment – WP 78

Sample holder I: Low temperature

goniometer, 15-400 K, exchangeable sample pucks

Sample holder III: fast scans across the wafers of sample arrays Moderate low temperatures

Commercially available static/rapid scan magnets (~8 T): (a) 2D vector magnet from Oxford Instruments and (b) Cryogenics Ltd.

XFEL SASE3 experimental floor

EuropeanXFEL Users' meeting 2014: SCS instrumentDetectors:DSSC & FastCCD

Sample size $\phi_{\sf obj}$ [µm]	1	3	5	10	Sample size ϕ_{obj} [µm]	1	3	5	10
FEL diameter [µm]	3	9	15	30	FEL diameter [µm]	3	9	15	30
DSSC distance [mm]					FastCCD distance [mm]				
0.5 keV	355	1065	1774	3549	0.5 keV	48	145	242	484
0.8 keV	568	1703	2839	5678	0.8 keV	77	232	387	774
1.2 keV	852	2555	4259	-	1.2 keV	116	348	581	1161
2.0 keV	1420	4259	-	-	2.0 keV	194	581	968	1936
3.0 keV	2129	6388	-	-	3.0 keV	290	871	1452	2904
Resolution [nm]	4	12	20	39	Resolution [nm]	4 (2)	13 (6)	21 (10)	42 (21)

29. January 2014, SCS instrument, Users' meeting 2013, European XFEL Andreas Scherz, WP-86 SCS instrument, European XFEL

16

XFEL Optical laser delivery

Optical Laser delivery (Guido Palmer, Optical Laser Group, WP 78) Optical

Optical table:

Up and down frequency conversion setups
Diagnostics
Delay stages

THz setup near the endstation

EuropeanXFEL Users' meeting 2014: SCS instrumentSCS Team built-up 2013AFELand next steps...

Jan Torben Delitz SCS Instrument Engineer

Manuel Izquierdo SCS Instrument Scientist

Robert Carley SCS Instrument Scientist

Preparing the Technical Design Report (March 2014) Start construction of instrument components (test assemblies) in second half 2014