

European XFEL Users' Meeting January 29, 2014

Thomas Tschentscher for European XFEL thomas.tschentscher@xfel.eu

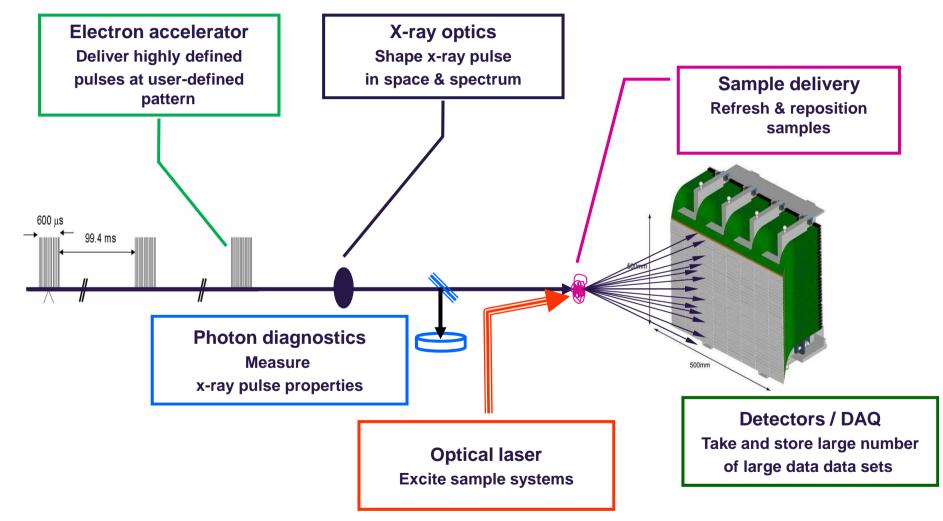
Overview

- From commissioning to full operation
- User program

XFEL European XFEL as User Facility

Scientific excellence

- Outstanding scientific research
- Framework for excellent science
- Peer-review access scheme


State-of-the-art instrumentation

- Cryogenic high repetition rate accelerator
- FEL modes and x-ray operation
- Scientific instrumentation
- Sample preparation facilities

Widen access possibilities

- Large number of experiment slots
- Efficient conduct of experiments
- Support of user groups

XFEL Overview of e⁻-beam & FEL operation modes

Electron energy

- 8.5, 12, 14, 17.5 GeV
- ±1.5 % fast scanning

Bunch charge/compression \rightarrow pulse duration

■ 20 – 1000 pC → 2 - 100 fs

X-ray delivery pattern

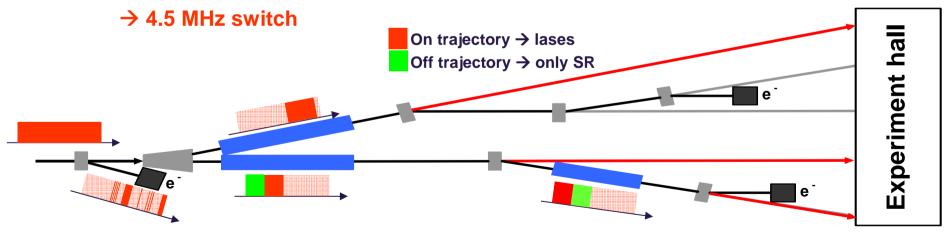
From pulse-on-demand to 4.5 MHz

Special

- Seeding
- Variable polarization
- and more ...

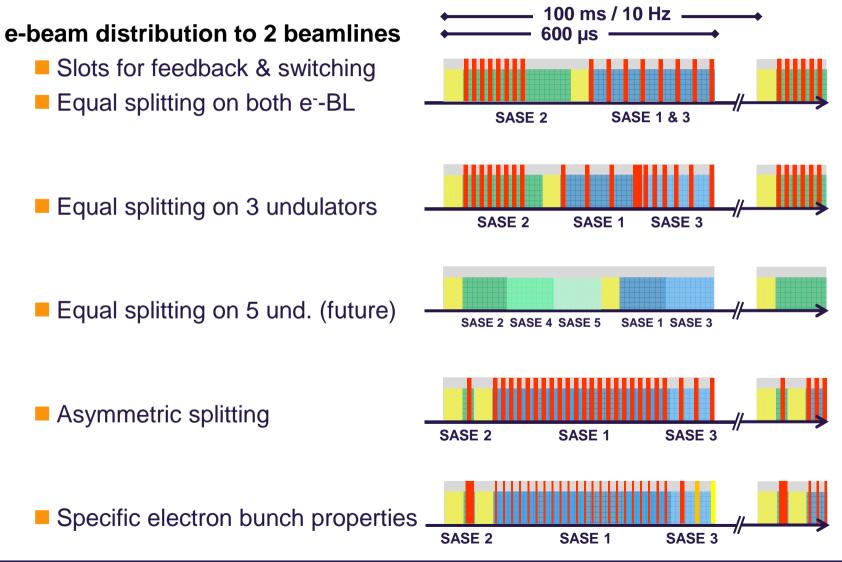
In addition: each instrument can determine x-ray settings

- Focus size
- Bandwidth
- Exact photon energy


European

XFEL

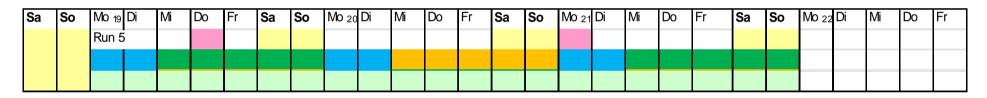
Quasi-simultaneous operation of SASEs


Dedicate & distribute electron bunches to instruments

- Operate accelerator as continous as possible
 - → stability / performance
- Distribute electron bunch train on two lines
 - \rightarrow 10 Hz switch (few µs duration)
- Switch on/off lasing for SASE 1/ SASE 3 line (optional)
 - → 4.5 MHz switches
- Determine exact bunch pattern

Electron bunch distribution : 27.000 bunches/sec to 3 (5) beamlines; in average 10-20 Hz and ~800 (500) pulses/train; using kicking methods to make bunches lase only in dedicated undulator

XFEL Electron bunch distribution


Thomas Tschentscher, European XFEL, European XFEL Users' Meeting, Hamburg 29/01/2014

XFEL Operating two instruments per SASE beamline

Concept

- Typical experiment slot 5 days; start/end on machine day
- Share day with two 12 hrs shifts
- Setup /changes on machine days
- Major modifications during shutdown weeks

Example of 4 week slot at any instrument Day shift (12 hrs; e.g. 10-22 hrs) Night shift (12 hrs; e.g. 22-10 hrs)

Optimized instrumentation

- dedicated setups & permanent installation where possible
- possibility to swap entire setups (chambers or interior) (only where applies)

XFEL A year at European XFEL

Annual operation

- **4800 hrs** accelerator operation for generation of x-rays
 - → Peer-reviewed proposals [4000 hrs]
 - Review committees
 - UC prioritized time allocation
 - → Internal activities [800 hrs]
 - Maintenance
 - R&D program & management contingency
- ~5600 hrs total accelerator operation
 - → Dedicated machine time
 - Maintenance (w. beam, short access) & tuning
 - R&D

User experiments

- **12000 hrs** user time by operation of three instruments in parallel
- ~200 user experiments / year

Steady-state operation !

XFEL Some challenges

Accelerator operation

- First FEL facility to operate several FELs/instruments quasi-simultaneously. Initially 3, later 5 or even 10-15 instruments
- At the same time FEL electron beam delivery to undulator is much more individual than e.g. for a storage ring

Maintain x-ray performance

- Size of facility leads to unprecedented long x-ray beam paths
- Coherence & wavefront preservation
- Effects of bunch train operation

User program

- Conduct complex experiments in relatively short user slots
- Fast switching between experiments (preparation, setup time)
- User support before, during & after experiments

Overview

- From commissioning to full operation
- User program

XFEL From commissioning to operation

Commissioning aims

- Commissioning of electron beam to generate hard x-ray SASE FEL radiation as soon as possible
- Commissioning of x-ray instrumentation to launch **early user program**
- Continue development of e⁻-beam and instruments for ~1 ½ yrs to reach extended electron and x-ray beam delivery

Early user operation

Starts 14 weeks after first SASE and includes all instruments after 7.5 months

Full user program

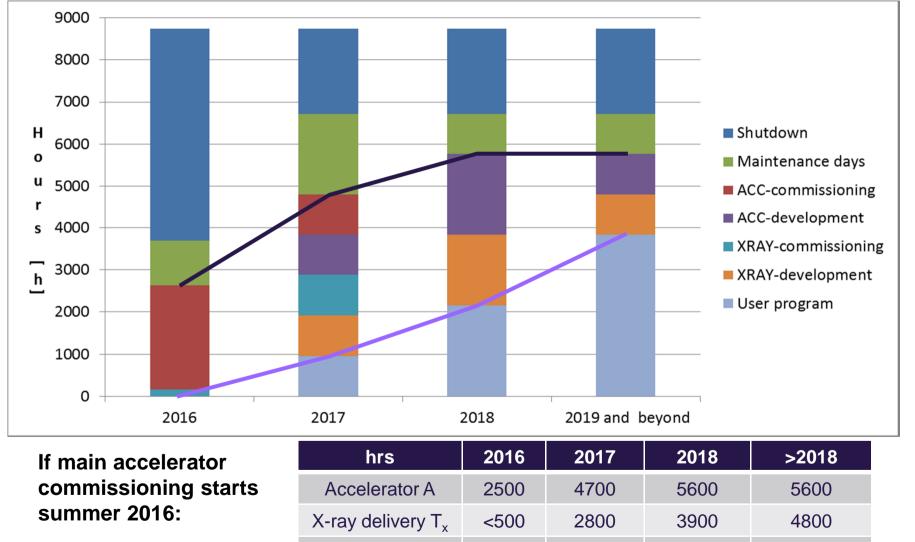
Provide full number of user hours when reaching the milestone of extended electron and x-ray beam delivery

XFEL Ramp-up of experiments

SPB & FXE (SASE1)

- First beam end 2016
- Early user operation from May 2017

SQS & SCS (SASE3)


- First beam Feb 2017
- Early user operation from June 2017

MID & HED (SASE2)

- First beam Apr 2017
- Early user operation from August 2017

XFEL Ramp-up operation

0

2 x 1000

3 x 2100

3 x 4000

Users ΣU_{NNN}

Thomas Tschentscher, European XFEL, European XFEL Users' Meeting, Hamburg 29/01/2014

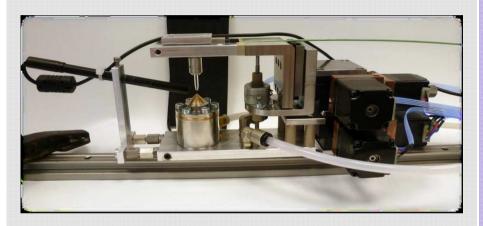
Overview

- From commissioning to full operation
- User program

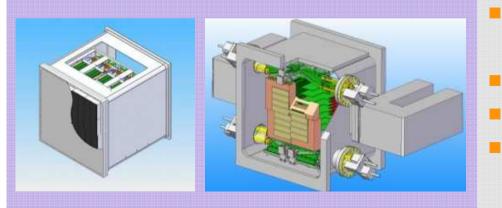
XFEL European XFEL as a user facility

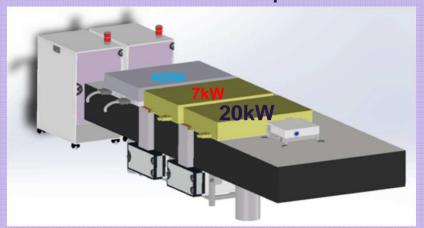
User program

- Access to beamtime based on scientific peer-review
- Invitation for experiments following successful review
- User groups are on-site for few (1-8) days only. Successful conduct of the proposed experiments requires:
 - → Preparation
 - → Performance (of accelerator and x-ray systems)
 - → Support
- For each group peak performance is what counts
 - → High availability of all sub-systems


How to enable this

- Provide the infrastructures
- Provide the staff
- Provide the data management & scientific computing tools


XFEL Infrastructures for users


Sample injection/insertion Liquid jets and sample changer

Detectors MHz frame rate area detectors

Optical lasers MHz/mJ/fs laser pulses

Sample preparation

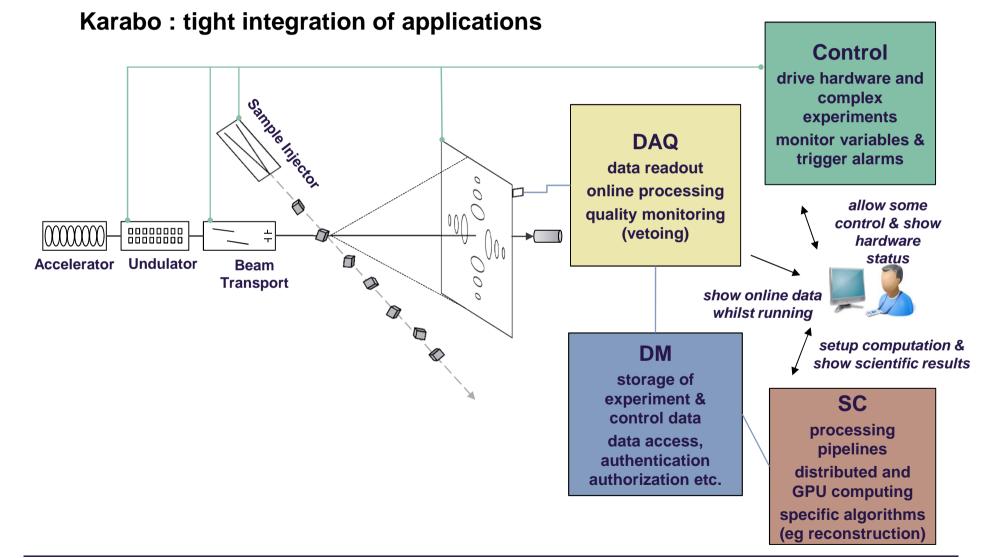
- 2x23m² chemistry wet labs
- 30m² x-ray lab for crystallography, SAXS, and reflectometry
- 30m² vacuum labs
- 44m² dry sample preparation
 - 2x22m² Electron microscopy and nanofabrication lab

Thomas Tschentscher, European XFEL, European XFEL Users' Meeting, Hamburg 29/01/2014

XFEL User support at the instruments

Enable successful experiments

- Before : Preparation; setup
- During : Monitor instr. performance & change setup; optimize strategies
- After : Checkout (initial & final data analysis, publication)


Scientific instrument groups [MID, HED, FXE, SPB, SQS, SCS]

- Responsible for user program/instrument operation
- 3 teams of 4 scientists (always one team associated with an user group)
- Correspondent for Before/During/After periods
- Contact to experts (instrument support & development (ISD) groups)

Continuous presence of team member(s) during user experiments

- Enable highly efficient usage of beam time
- Involve ISD group members where required
- Plus: on-call service for ISD groups & hall operation group

XFEL Conclusion

European

Operation model of European XFEL is being established

- Ramp-up period of accelerator and x-ray delivery
- Increase operation for users over 3 yrs to final 4.000 hrs per annum
- Aim at operation of 3 science instruments in parallel \rightarrow 12.000 user hrs

Facility operation

- Define accelerator operation modes
- Operation of accelerator & x-ray systems from different locations while maintaining a high level of collaboration and coordination
- Operation of scientific instruments for users over several weeks and at high level of support
- Learn from initial operation, evaluate and adjust where necessary

Thank you for your attention