

Formation of diamonds in lasercompressed hydrocarbons at planetary interior conditions

Dominik Kraus

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Giant Planets

T. Guillot, Science 286, 72 (1999) T. Guillot, & D. Gautier, Treatise Geophys. 10, 439–464 (2007)

Member of the Helmholtz Association

Dominik Kraus | Institute of Radiation Physics | www.hzdr.de

Giant Planets – Hydrogen phase diagram

100 GPa = 1 Mbar

T. Guillot, Science 286, 72 (1999) T. Guillot, & D. Gautier, Treatise Geophys. 10, 439–464 (2007)

Models of the icy giant planets

100 GPa = 1 Mbar

N. Nettelmann et al., Icarus 275, 107–116 (2016)

M. Bethkenhagen et al., Astrophys. J. 848, 67 (2017)

The ice layer in Uranus and Neptune-diamonds in the sky?

MARVIN ROSS

University of California, Lawrence Livermore National Laboratory, Livermore, California 94550, USA

letters to nature

Nature 292, 435 - 436 (30 July 1981); doi:10.1038/292435a0

Simulations: Polymerization and C-H phase separation in methane

F. Ancilotto et al., Science 275, 1288 (1997)

G. Gao et al., J. Chem. Phys. 133, 144508 (2010)

Member of the Helmholtz Association

Dominik Kraus | Institute of Radiation Physics | www.hzdr.de

Compressed and heated methane

 $\rm CH_4$ recovered from DAC at 20 GPa and 2000 K

L. R. Benedetti et al., Science 286, 100 (1999)

Laser-driven shock waves

Intensity ~10¹³ W/cm² (wavelength 527 nm):

Ablation pressure: P ~ 150 GPa = 1.5×10^6 bar

- \rightarrow shock wave
- → Entropy and temperature increase due to compression wave
- → Multiple shocks: lower entropy and temperature increase compared to single shock to same pressure!

LCLS experiments on CH phase separation

LCLS experiment on CH phase separation

Pulse shape

83 µm polystyrene:

1st shock: 60 GPa, 4000 K 2nd shock: 150 GPa, 5000 K

LCLS experiment on CH phase separation

Page 10

X-ray diffraction + spectrally resolved X-ray scattering

Diamond diffraction intensity (scaled to Al): ~40% of carbon atoms are in diamond lattice.

X-ray diffraction + spectrally resolved X-ray scattering

$$S(k) = W_{el}(k) + W_{bound-free}(k) + W_{free-free}(k)$$

Diamond diffraction intensity (scaled to Al): ~40% of carbon atoms are in diamond lattice.

CH liquid diffraction intensity: <100% of sample volume consists of CH liquid. (would need to be >100 % for CH_2 and CH_3 to fit data)

X-ray diffraction + spectrally resolved X-ray scattering

$$S(k) = W_{el}(k) + W_{bound-free}(k) + W_{free-free}(k)$$

Diamond diffraction intensity (scaled to Al): ~40% of carbon atoms are in diamond lattice.

CH liquid diffraction intensity (scaled to XRTS): <100% of sample volume consists of CH liquid. (would need to be >100 % for CH_2 and CH_3 to fit data)

Microscopic picture

VISAR data for step pulse from 50 µm polystyrene

Approximate locations in phase diagram from simulations

D. Kraus et al., Nature Astronomy 1, 606-611 (2017)

Member of the Helmholtz Association Dominik Kraus | Institute of Radiation Physics | www.hzdr.de

Using SAXS to infer diamond size

Using Small Angle X-ray Scattering (SAXS) to infer diamond size

Unpublished data

Unpublished data

Using Small Angle X-ray Scattering (SAXS) to infer diamond size

Unpublished data

Unpublished data

Diffraction: lower limit via Scherrer formula: diamond diameter > 4nm consistent with SAXS

Recovery target tests

Summary

X-ray Free Electron Lasers in combination with high-energy lasers: Unprecedented possibilities for studying chemical processes inside giant planets.

Example: Diamond precipitation inside ice giants

Combining various X-ray diagnostics in one experiment is extremely powerful!

Just the beginning of studies like this! \rightarrow e.g. HED / HIBEF at XFEL.EU

Collaboration LP34

HZDR

D. Kraus, N. J. Hartley, A. K. Schuster, K. Rohatsch, I. Prencipe, M. Rödel, A. Laso, A. Pelka, T. E. Cowan, A. Ravasio, S. Frydrych, T. Döppner, H. J. Lee, E. E. McBride, S. Brown, P. A. Heiman, D. O. Gericke E. Cunningham, P. Sun, M. Schörner, E. J. Gamboa, R. Redmer, S. H. Glenzer, A. E. Saunders, M. M. MacDonald, R. W. Falcone, S. J. Demaio-Turner, A. Zettl, M. Schölmerich, J. Vorberger

Member of the Helmholtz Association Dominik Kraus | Institute of Radiation Physics | www.hzdr.de

European

