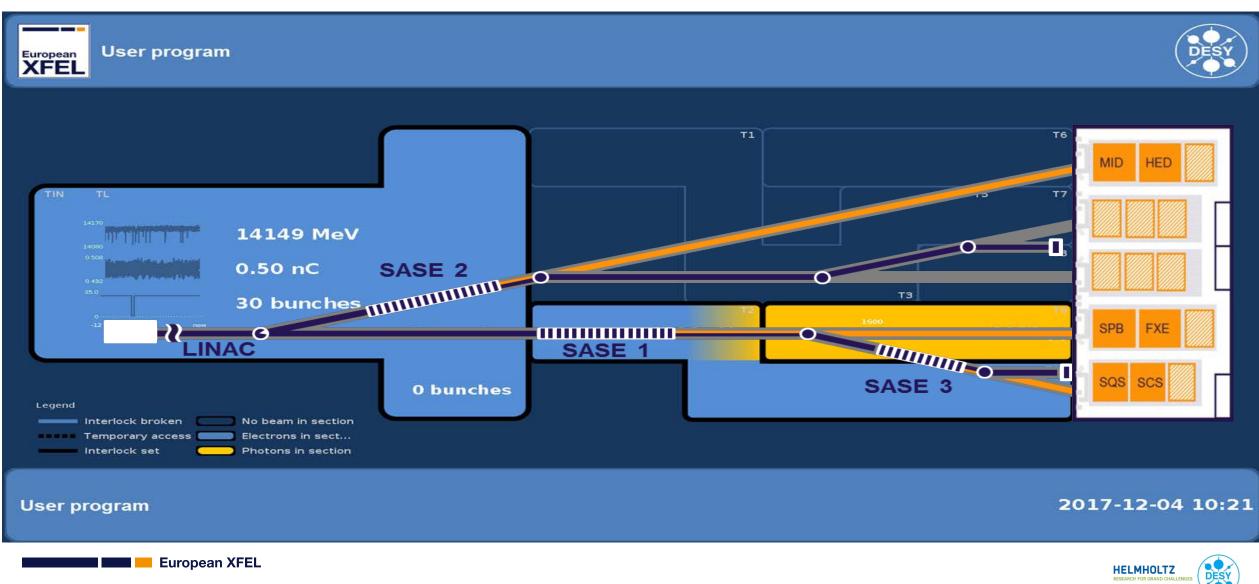
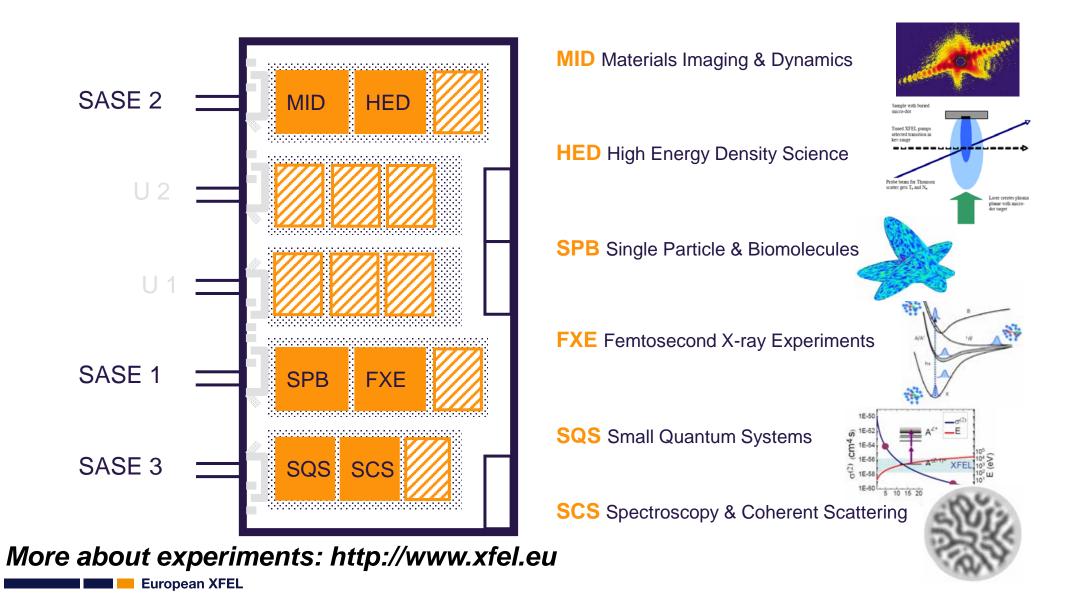

Electron Accelerator – Commissioning Experience and Plans for 2018

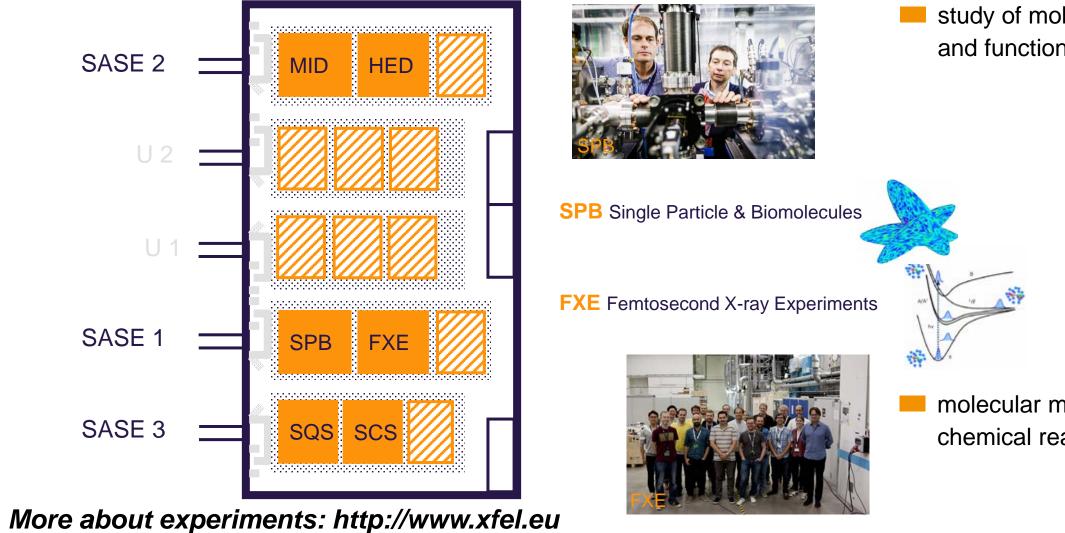
HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

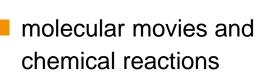



Winni Decking & Hans Weise, DESY 01.2018

User Program Started

European XFEL				DESY
TN TL 14149 MeV 2450 0.50 nC 0.50 bcm 0.50 bcm 0.50 bcm 0.50 bcm	30 bunches 0 bunches	т 9300 eV	T5 T7 T5 T7 T8 T3 T3 T4 T10	MID HED FXE SCS SQS
Interlock set Photons in section			20	017-12-04 10:21
European XFEL				HELMHOLTZ RESEARCH FOR GRAND CHALLENGES


Who is getting the First Photons?



European XFEL

study of molecule structure and functions

Winni Decking & Hans Weise, 01/2018

European XFEL History

May 2/3, 2017

European XFEL

2000:

First laser light (109 nm) at the Tesla Test Facility (TTF); today known as FLASH

2001 / 2002 / 2006:

TESLA Linear Collider TDR with XFEL Appendix (2001) TESLA TDR Supplement with stand-alone XFEL (2002) **European XFEL TDR (2006)**

2009:

Foundation of the European XFEL GmbH Start civil construction

2010:

Foundation of the **Accelerator Consortium** 16 institutes coordinated by DESY

2012:

Tunnel finished Start infrastructure installation

2016:

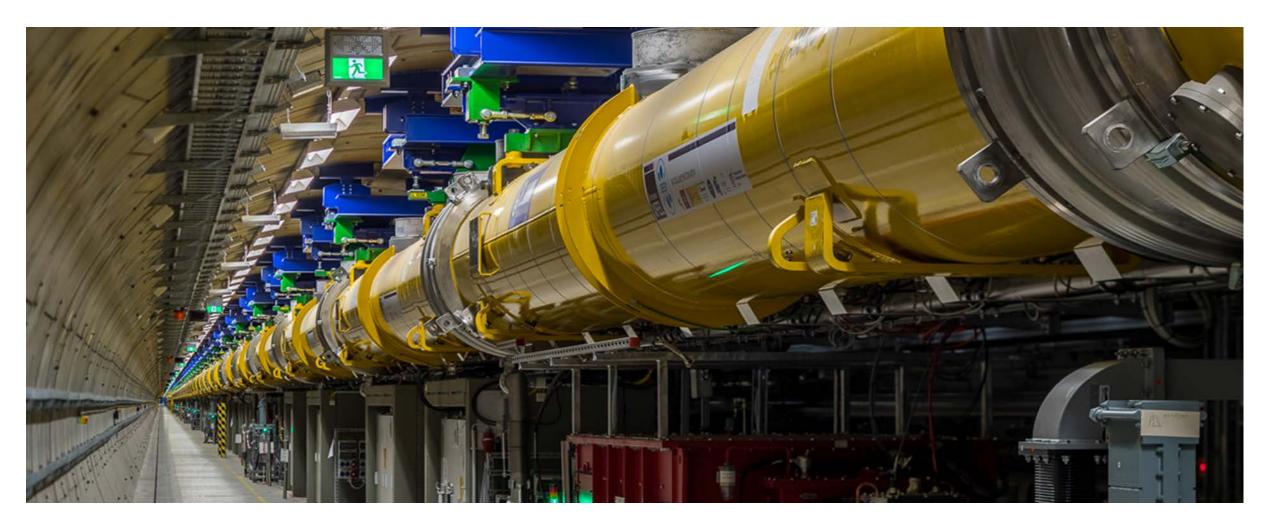
Accelerator finished Start commissioning with cool down

HELMHOLTZ

Electron Accelerator – Commissioning Experience and Plans for 2018

Winni Decking & Hans Weise, 01/2018

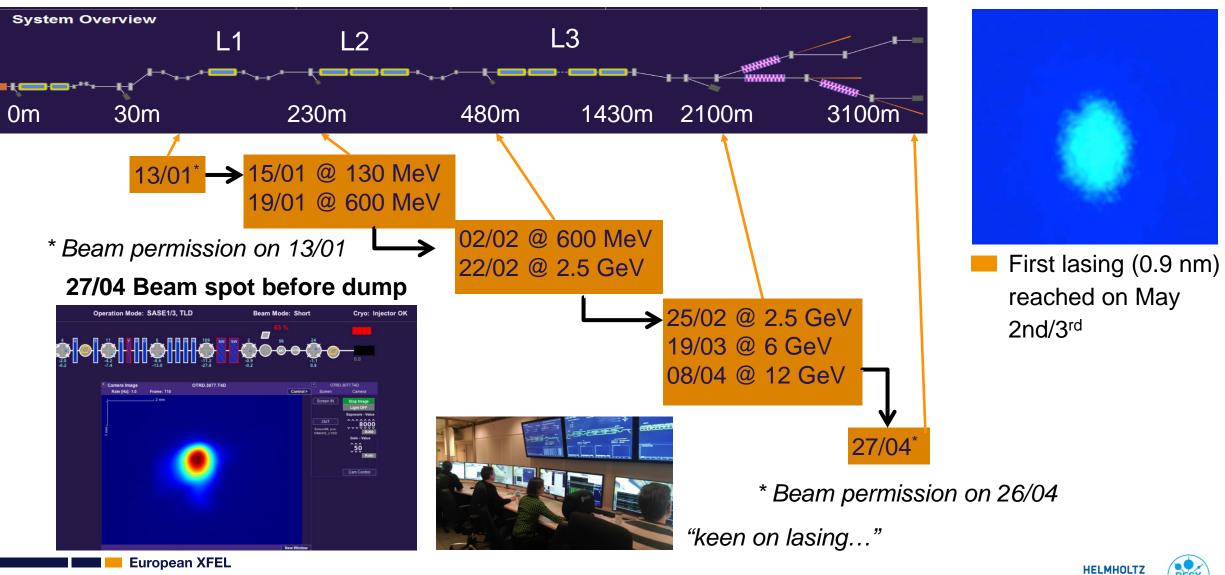
Winni Decking & Hans Weise, 01/2018

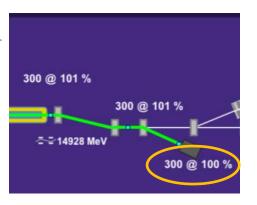

Special Thanks to all Colleagues and Friends

The European XFEL uses the by far Longest Superconducting Linac Worldwide

Winni Decking & Hans Weise, 01/2018

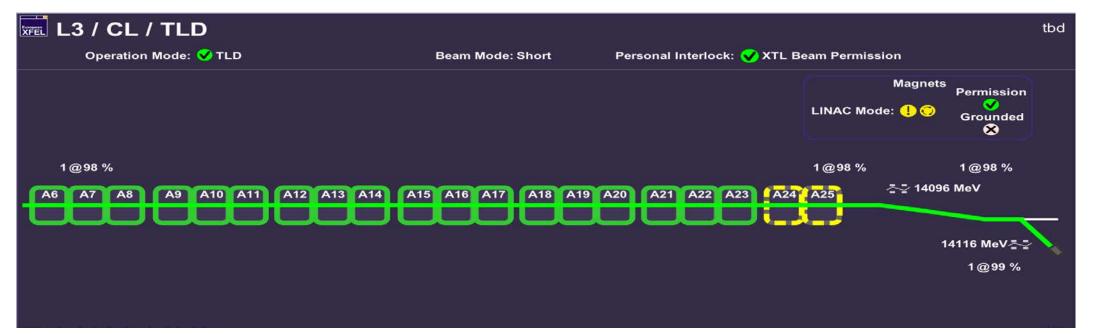
Superconducting Technology


- The successful construction and commissioning of the European XFEL was the result of excellent cooperation within the DESY coordinated Accelerator Consortium consisting of 16 institutes.
- The used TESLA technology was developed since the early 90ies.
 FLASH is the first result of this R&D and can be seen as the prototype.
- With the European XFEL the fully successful technology transfer to industry reached an important point:
 - Other worldwide projects (LCLS-II, ESS, new SRF based FELs at e.g. SINAP, China) are profiting greatly from our efforts.


The first months after the last Users' Meeting

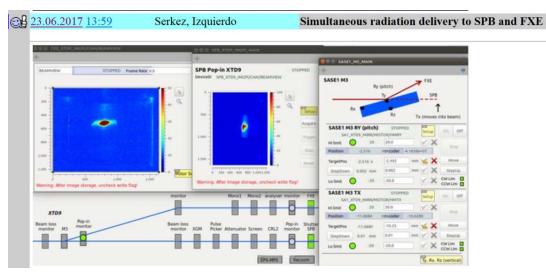
Accelerator Status as of today

- Accelerator has been commissioned according to schedule and towards expected parameters, about 6400 h of scheduled beam time, always being very close to the commissioning schedule
 - 23 out of 25 RF stations commissioned (last two in CS9, will be ready in Q2/2018)
 - Maximum potential final energy obtained during dedicated LLRF studies: 16.1 GeV
- Maximum beam energy 14.9 GeV, user operation with 14.0 GeV —
- Routine operation with 300 bunches/second in user mode –
- Test operation in linac mode with 3000 bunches/second (≈ 18 kW beam power)



RF Commissioning: process and results

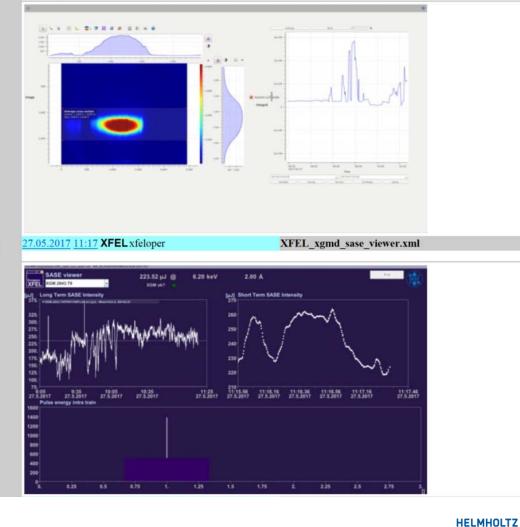
- About 3.5 month total commissioning time with up to 3 teams in parallel
- Without and with electron beam in parallel to other beam commissioning
- 23 out of 25 RF stations initially commissioned
- Operation automated; energy goal for 2017/2018 reached with 1-2 stations in reserve
- Reserve stations can be and are used for further studies / gradient increase



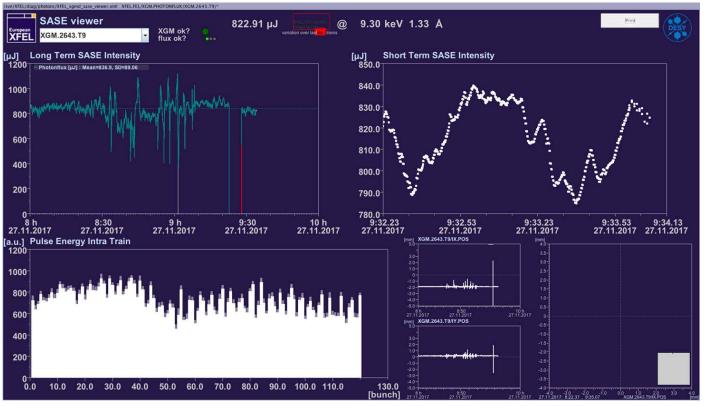
First Lasing Results

- 1st lasing at about 1.6 keV (02/05)
- Undulator trajectory alignment (23/05)
- 1st lasing at about 6.2 keV (24/05)
- Photon beam transport (26/05)

First photons in hutches (26/06)

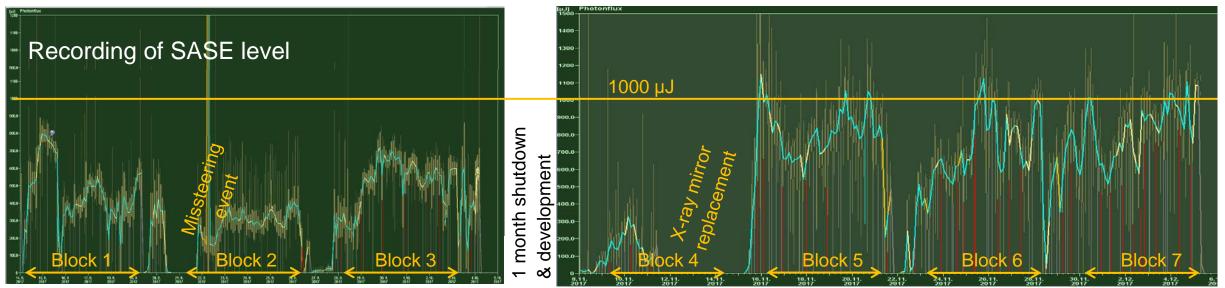

Harald Sinn

32


Beam at the end of XTD9

Beam from M2 at the end of XTD9 tunnel in front of the SPB instrument (SPB screen). The beam size is approx 4x12 mm. The vertical ripples come from the profile distortions of the mirrors and show the high quality of the mirrors (otherwise the beam would split up).

First Lasing Results


- 1st lasing at about 1.6 keV (02/05)
- Undulator trajectory alignment (23/05)
- 1st lasing at about 6.2 keV (24/05)
- Photon beam transport (26/05)
- First photons in hutches (26/06)
- Photon systems / experiment commissioning
- First user run (14/09)
- 1200 X-Ray pulses / s (27/11)

1200 bunches/s lasing - during radiation protection tests


Facility performance during user run

- 7 user blocks, 5 days each, with 2 days in between for set-up & tuning
- 14 GeV, 1-30 bunches, 9.2 9.3 keV
- Availability (= SASE delivery above threshold) between 10% (Block 4) and 97% (Block 6&7)
- Little tuning needed (because of limited flexibility offered), but frequent small wavelength changes and variation of bunch number (1-30)
 - Prominent error sources: X-ray mirror, operation & controls, RF trips (speedy recovery), magnets

Good User Day (30.09.)

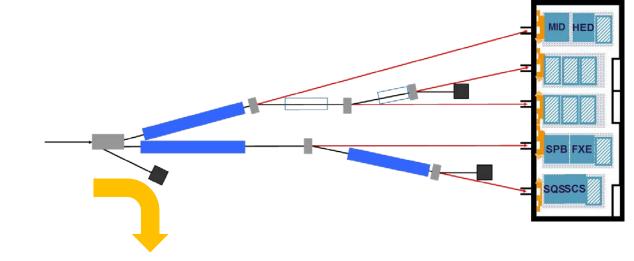
14 GeV, 500 pC, 1 to 30 bunches
Photon energies: 9.2 – 9.3 keV
fine tuning: Gap & number of bunches on user demand

Challenging:

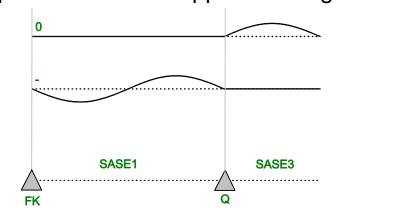
Easy control of photon wavelength

- Missing possibility to look for correlation between electron and photon signals
- Global undulator controls

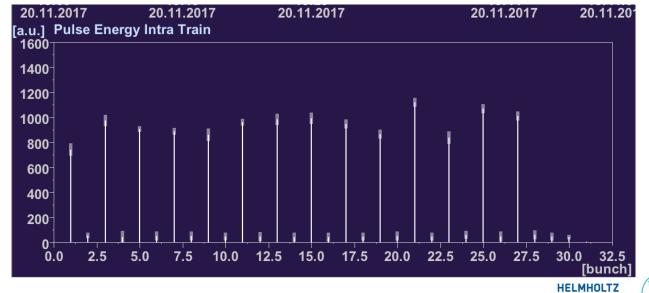
Stability & Feedbacks


- Stability will be greatly improved by feedback systems (needs bunch trains)
- Continue to find and hunt for jitter and drift sources
- Need more on-line correlation with photon based signals from photon diagnostics and experiments
- Electron beam measured jitter
 - Transverse jitter about 0.1 σ for bunches 5 30
 - Energy jitter about 1e-4
 - Arrival time jitter about 30-40 fs, potential for 10 fs

Set Parts Predback ON Press Statistics 89 BPM1 BPM2 Feedback ON PF Ress Statistics 89 1 0.025 1.015 Statistics 89 89 0 0 FF Ress Statistics 89 0 1 Statistics 89 0.035 -0.147 Statistics 89	Y-PLANE Prediack ON PF Reset Statistics
BH4 1925 TUX TD (mm) - Mean0.00638, 5D=0.01377	non 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
Tabo arbo abo abo arbo abo abo abo abo abo abo abo abo abo a	Tobo stbo stbo



Individual Bunch Pattern


Kick bunches into dump after linac

Operate SASE3: Suppress lasing in SASE1

European XFEL

Winni Decking & <u>Hans Weise</u>, 01/2018

UP/XD

Sa Su Mo Tu We

Tu We

We Th

Mo

23 24 25 26 27 28 29 30

Tu We Th

Fr

Fr Sa Su Mo Tu

Sa

Su

XC

31

Fr Sa

Schedule 2018 Weekend Bank holiday Scheduled down Legende: 2018 1 2 3 6 10 13 14 15 16 17 18 19 20 21 22 11 12 5 9 Mo Jan Tu We Sa Mo Tu We Sa Su Mo Tu We Th Fr Sa Su Mo Su Program Feb Th Fr Sa Su Mo Tu We Sa Su Mo Tu We Th Fr Sa Mo We Th lFr Su Tu Th Program Mrz Th Fr Sa Su Mo Tu We Th Sa Su Mo Tu We Th Fr Sa Fr Su Mo Tu We Th Program Apr Program Mai Program Jun Program

					10							11							12							13					
_	0	14-	Τ.,	10/-	Th	F -	0	0	14-	т.,	10/-	TL	F -	0	0	N.4 -	Τ.,	10/-	T1-	F -	0	0	N4-	т.,	10/-	Th	Γ.	0-	0	14-	
	Su	Mo 14		We	Th	Fr	Sa	Su	Mo 15		We	In	Fr	Sa	Su	Mo 16	1	We	Th	Fr	Sa	Su	Mo 17		We	Th	Fr	Sa	Su	Mo 18	
		14							15														17							10	
	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th
							18							20							21	1						22			
	Fr	Sa	Su			We	Th	Fr	Sa	Su	Mo		We	Th	Fr	Sa	Su			We	Th	Fr	Sa	Su			We	Th	Fr	Sa	
				23							24							25							26						
_	Su	Mo	Ти	We	Th	Fr	Sa	Su	Mo	Ти	We	Th	Fr	Sa	Su	Mo	Ти	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu
	04	27		```		ľ .	-		28					-	0u	29				[.	-		30					ou	0 u	31	
	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr
l						32	2						33							34							35				
	0	0		Ŧ	10/-	T 1	-	0	0		T	101-	T 1	Fr	0	0		т	0.0	T1.	Fr	0	0		T	0.07	T 1	Fr	0	0	
	Sa	Su	Mo 36		vve	Th	Fr	Sa	Su	Mo 37	Tu	We	Th	Fr	Sa	Su	Mo 38		We	Th	Fr	Sa	Su	Mo 39		We	Th	Fr	Sa	Su	
			- 30							51							50							55							
	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We
	40			1				41							42							43							44		
[Th	Fr	Sa	Su	Mo	I	We	Th	Fr	Sa	Su			We	Th	Fr	Sa	Su		Tu	We	Th	Fr	Sa	Su			We	Th	Fr	
					45							46							47							48					
_	Sa	Su	Mo	Ти	We	Th	Fr	Sa	Su	Mo	Ти	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo
ľ	Ja	ou	1010	1.0	**e	P"'	Ľ 1	Ua -	^{ou}	100	ru -	100		Ľ '	<u> </u>	^{ou}	1410	l'u	008		Ľ 1	0a	ou	NIU	i u	008			Ja	ou	1010

SD	Scheduled down								
ST	Access, Setup, Tuning								
AD	Accelerator Development								
XD	X-ray Development								
XC	Experiment Development								
UP	User Program								

About 6800 hours of operation

Shutdowns:

- January & April for CS9
- June/July for IL and MKK work
- December for SASE2 self-seeding

Jul

Program Aug Program Sep Program Okt Program Nov

Program Dez Program

21

Accelerator R&D – Different Categories

IMP:

Improvement of operational stability and efficiency

Continuous R&D to improve operational stability and efficiency of the existing facility. The direction of these activities might alter during operation.

CW:

Continuous Wave (CW) operation of XFEL (common interest with ARD-ST1 program)

R&D with the goal for a credible proposal for an upgrade of the European XFEL towards CW operation.

EXT:

Extension of the facilities' parameters and performance range (common interest with ARD-ST3 program) Electron source, electron bunch manipulation, novel diagnostics, novel radiation schemes.

OPEN:

Open short term R&D

European XFEL

Goals for 2018

- SASE1: About 1,600 h user operation
- SASE2: First e-beam in March, first lasing in May
 Commission laser and photon systems parallel to user runs
 Installation of Self-Seeding Chicanes (December)
- SASE3: First lasing in February
 - photon systems commissioning influences SASE1 operation
 - Accelerator:
 - 17.5 GeV by July (continue high gradient task force & CS9 installation and commissioning)
 - 3,000 bunches/second lasing in SASE1 by mid of the year (Possible limitation: dose rate in undulators)
 - 27,000 bunches in XTL by December

2018 E-beam Parameters

Quantity		Project Goal	Achieved	Routine	2018 Goal
electron energy	GeV	8/12.5/14/17.5	6-14.9	14	8/12.5/14/17.5
bunch repetition frequency within pulse	MHz	Up to 4.5	1.1, 4.5	1.1	1.1
bunch charge	рС	20 – 1000	100, 500	500	200, 500
electron bunch length after compression	fs (FWHM)	2 – 180	20, 90	90	40, 90
beam power	kW	500 kW	18 kW	1.8 kW	50 kW
undulators in operation (lasing)		SASE1-3	SASE1	SASE1	SASE1-3
photon energy (SASE1)	keV	0.25 - 25	1,6,9	9-9.5	6-15
photon pulses / s / undulator		27000	1200	300	3000
saturation power (@ 14 GeV, 500 pC, 9 keV)	mJ	1	1	0.4	1

