Laser systems for science instruments

M. J. Lederer

WP78, European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
Outline

- Introduction
- Lasers for experiments at the EXFEL
- Pump-Probe laser
 - Concept, R&D results and some specs
 - Production systems and installation
- Beam delivery and day-1 conditions
- Summary and outlook
Introduction

- 3 underground experimental areas with 3 X-ray beams
- 6 experiment stations
- Up to 60% of experiments require optical lasers.
Laser systems for science instruments

Experiment Hall

<table>
<thead>
<tr>
<th>MID</th>
<th>HED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>PP</td>
</tr>
<tr>
<td></td>
<td>TW</td>
</tr>
<tr>
<td></td>
<td>SHOCK</td>
</tr>
</tbody>
</table>

Types of experimental lasers:

- **PP-type**
 - high rep-rate, sync

- **HE/HI-type**
 - 10Hz

- **PP**: pump-probe:
 - sub-15…300fs, mJ-class, 0…4.5MHz, 800nm
 - UV…mid-IR, THz

- **MAL**: molecular alignment:
 - sub-20fs, 1…10mJ, 800nm ("kick")
 - 1J-class, 10Hz ns ("adiabatic")

- **100TW**: high intensity (HI):
 - <30fs, 10Hz, 100 TW-class laser, Tisa

- **100J**: high energy (HE):
 - 100J…kJ-class ns-laser, 10Hz, green, exp. ramp

Talk: "Laser systems for science instruments"
M. J. Lederer, Laser Group WP78, European XFEL GmbH
Pump-Probe laser goals

The European XFEL mode of operation: 10Hz Burst

- up to 2700 "e- bunches" a 0.1...1 nC => eff. rep-rate: 27000 Hz

- Match XFEL: 10Hz burst, 0 – 4.5MHz
- 800nm: 15 - 300fs, mJ
- Arbitrary pulse pattern selection
- Frequency conversion

Δt = 220 ns
4.5 MHz

<100 fs x-ray pulse
FEL process

600 μs
100 ms
Pump-Probe laser concept: fs-pumped NOPA

Pulse energies:
- 80 µJ @ 4.5MHz
- 330 µJ @ 1.1MHz

Burst power: 360W (600 µs)

Pulsewidth: 15fs

Spectrum: 13.8 fs Fourier-limited pulse

Burst-noise: 2.5 % rms (scope, high air flow conditions)

Burst shape: clean, arbitrary sequences possible
Gaussian fit >94% for 15 Rayleigh ranges

Close to diffraction limited Gaussian beam: $M^2 < 1.1$
NOPA I + II + III

- **Pulse energy:** 1.7mJ @ 188kHz

 2.5mJ @ 100kHz

- **Burst power:** >250W (600 µs)

- **Pulsewidth:** <15fs

- **Beam quality:** similar to NOPA I + II
Dispersion management

Short pulse dispersion management: 15fs pulse duration

1. From SCG
2. CMs
3. - Φ"
4. Multi-stage parametric amplifier
5. Pump pulse

Long pulse dispersion management: 25-300fs pulse duration

1. From SCG
2. CMs
3. + Φ”
4. Multi-stage parametric amplifier
5. Pump pulse
6. + Φ”
7. Bulk Fused silica compressor
8. - Φ”
9. Transmission grating compressor
Long pulses from the NOPA

60 fs pulse (Treacy compressor)

\[\tau_{\text{Gauss}} \approx 50 \text{fs} \]

280 fs pulse (No compressor)

\[\tau_{\text{Gauss}} \approx 240 \text{fs} \]
1030nm pump beam and mixed-mode

Talk: “Laser systems for science instruments”
M. J. Lederer, Laser Group WP78, European XFEL GmbH

Mixed-mode: e.g. 100kHz, 1mJ / 15fs / 800nm and 10mJ / 400ps / 1030nm
Production system SASE 1

- SASE 1 Layout
- 1 laser for 2 experiments
- Installation schedule:
 - Laser tables: May 2016
 - Components + comm.: July 2016
 - Beam at experiment: May 2017
Pump-probe laser hutch SASE 1

Clean room,
+/- 0.1° C

Prep-area
+/- 1° C
XHEXP 1 with laser installations

HI/HE SASE 2

PP SASE 3

PP SASE 1

PP SASE 2
Beam delivery concept and responsibilities

WP78
- Laser configuration
- 800nm / 1030nm / f / \(\tau \)
- Burst and pulse selection
- Overlap delay
- Limited tuning

Instruments, WP78
- Beam routing
- Dispersion management
- Various controls
 - Attenuation
 - Pulse selection
 - Overlap delay
 - Shutter
 - Limited tuning
- Harmonics?
- TOPAS?
- ...

Instruments, WP78
- Pump-probe delay
- Various controls
 - Attenuation
 - Pulse selection
 - Overlap delay
 - Shutter
 - Limited tuning
- Coupling to experiment
- Timing tool
- Harmonics?
- TOPAS?
- ...

Talk: "Laser systems for science instruments"
M. J. Lederer, Laser Group WP78, European XFEL GmbH
Example SPB-SFX:

1) From PP-Laser hutch:
 - **800 nm**, ~ 300fsec (chirped, compressible to 15fs when passing correct length of UV-grade fused silica)
 - Pulse energy: ~ 50 μJ
 - Polarisation: Linear, vertical
 - Rep-rate: **100 kHz**
 - Alignment laser: 787 nm and 1055 nm (collimated laser diodes)
 - Remote operation of alignment laser and shutter.

2) Laser Specs at SPB experiment:
 - **400 nm** – *SHG provided by WP78*
 - Beam diameter: **50 μm on target**
 - Pulse duration: ~ **15 fsec**
 - Pulse energy: **1 μJ**
 - Polarisation: Linear
 - Repetition Rate: 100 kHz
 - Delay time: -2, -1, 0, 1, 2, 3….100 ps. -100, -90, …. 100, 110, 120…. 1000 fs 100 – 200 time point
Schedules

General PP-laser installation schedule:

- **Task 1**: Laser tables and infrastructure in PP and ILH-hutches
 - month 1-3
- **Task 2**: Components + commissioning in PP and ILH-hutches
 - month 4-11
- **Task 3**: Beam at experiment for day-1
 - month 12

SASE-specific milestones:

<table>
<thead>
<tr>
<th>SASE</th>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASE 1</td>
<td>„sensitive equipment (start Task 1)</td>
<td>26.04.2016</td>
</tr>
<tr>
<td></td>
<td>„infrastructure complete“ (start Task 2)</td>
<td>19.07.2016</td>
</tr>
<tr>
<td>SASE 3</td>
<td>„sensitive equipment (start Task 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>„infrastructure complete“ (start Task 2)</td>
<td></td>
</tr>
<tr>
<td>SASE 2</td>
<td>„sensitive equipment (start Task 1)</td>
<td>29.10.2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.01.2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.03.2017</td>
</tr>
</tbody>
</table>
Summary PP-laser for science instruments

- **800nm burst-mode NOPA:**
 - burst average power of >300W
 - up to >2mJ single pulse energy
 - <15fs … 300fs, close to transform limited
 - nearly diffraction limited beam quality
 - 4.5MHz, 1.1MHz, 200kHz, 100kHz, arbitrary pulse sequences

- **1030nm burst-mode:**
 - Burst average power of >4kW
 - up to 40mJ single pulse energy
 - 800fs or 400ps
 - M² < 1.5
 - 4.5MHz, 1.1MHz, 200kHz, 100kHz, arbitrary pulse sequences

- **Installation of production systems starts in May 2015 at SASE 1**
Thank you!

WP78:

Mikhail Pergament
Martin Kellert
Kai Kruse
Jin Wang
Guido Palmer
Gerd Priebe
Laurens Wissmann
Ulrike Wegner
Moritz Emons
Daniel Kane
Max Lederer