Run 12 @ FXE Town Hall Update

Chris Milne on behalf of FXE

European XFEL FXE – Femtosecond X-ray Experiments

EuXFEL Town Hall 10.10.2023

European

https://www.xfel.eu/

FXE: Femtosecond Hard X-ray Experiments

A Suite of Simultaneous X-ray Tools & Laser Excitation Sources

Single-shot dispersive resonant and non-resonant XES: von Hamos

Wide(Small)-angle X-ray Scattering and X-ray Diffraction: Large Pixel Detector (LPD) and Jungfrau

X-ray absorption spectroscopy (5-20 keV): **scanning** (Si(111) 4-bounce mono) and **single-shot** (Spectrum analyzer)

Scanning resonant and non-resonant **XES** (RXES): Johann spectrometer

"Scientific instrument Femtosecond X-ray Experiments (FXE): instrumentation and baseline experimental capabilities" A. Galler , et al., J. Synch. Rad., 26, 1432 (2019)

"Ultrafast X-ray Photochemistry at European XFEL: Capabilities of the Femtosecond X-ray Experiments (FXE) Instrument" D. Khakhulin, et al., Appl. Sci., 10, 995 (2020)

Sample environment: Liquid & Solid state experiments 50° Solid sample 20° chamber 94mm 65° WAXS 0.25 MHz for WAXS X-rav Pump XES after the whole train (100 pulses) Κα 2092 µm in 26 µsec ̈́Kβ

Vacuum environment (1e-5 mbar) X-ray probe in transmission geometry Up to 15k samples accessible per filling/evacuation Parallel X-ray emission and scattering compatible Diffraction up to 8.8 Å⁻¹ at 16.5 keV and 20_{max}=63°

courtesy of P. Zalden (peter.zalden@xfel.eu)

He environment

- Open on 3 sides (XES, XAS, WAXS compatible)
- Parallel UV-Vis flow loop to monitor sample
- Jet diameter 25-200 µm
- Bragg angle range 67-83°
- WAXS maximum Q up to 10 Å-1

courtesy of F. Lima (frederico.lima@xfel.eu)

courtesy of D. Khakhulin (dmitry.khakhulin@xfel.eu)

Scientific Scope of FXE: Measuring ultrafast dynamics with hard X-rays

FXE Group Members

Engineering team

Martin Knoll

Paul Frankenberger

Postdocs

Han Xu

Doriana Vinci

Hao Wang Diana Bregenholt Jakobsen **European XFEL**

Sharmistha Paul Dutta

Joint PhD students

Tobias Eklund (Mainz) Nodoka Hara (Camerino) Nupur Khatu (Venice) Juan Hidalgo (IMDEA)

Leading Scientist

Chris Milne

Dmitry Khakhulin

Frederico Alves Lima

September 2023

Peter Zalden

Yifeng Jiang

Hazem Yousef

Maria Peter

6

Mykola Biednov Yohei Uemura

pean XFEL Town Hall, 10.10.2023

Fernando Ardana Lamas Xinchao Huang

7

FXE Update

9

2D X-ray detectors @ FXE

LPD built by the Rutherford Appleton Laboratory for the European XFEL

1 Megapixel – 500µm pixels

4.5 MHz frame rate

High dynamic range, 1 to **1x10**⁵ photons per pixel per pulse. Using **parallel gain stages** (1x, 10x, 100x)

Large Pixel Detector

High energy sensitivity – 500µm thick Si sensor

512 (510) frame memory depth continuously stores all three gains, overwriting whenever a veto is received

Jungfrau built by the **Paul Scherrer Institute** 500 kpixel per module (FXE has a 500k and 1M) **10 Hz** operation or **16-cell burst mode** (160 Hz) High dynamic range, 1 to **1x10**⁵ photons per pixel per pulse. Using **gain switching Low noise:** < 2 keV single-photon sensitivity **75 um pixels**

Optical excitation schemes and conditions

Parameter	Pump-probe system 1	Pump-probe system 2
Fundamental wavelength	800 nm	1030 nm
Pulse rep. rate.	282 kHz (1.1, 4.5 MHz)	4.5 MHz
Pulse energy	800 µJ (200 µJ at 1.1 MHz)	1 mJ (40 mJ at 100 kHz)
Pulse duration (FWHM)	15 fs / 50 fs	800 fs
Frequency conversion	SHG, THG, OPA (50 fs)	SHG, THG, FHG
OPA wavelength range *	240 nm – 15000 nm *	N/A

Topas OPA installed and output commissioned, used successfully for in-house experiment 12.2022

THz source developed in laser lab, next step is to install in the X-ray hutch (LAS, SCS)

European XFEL

courtesy of M. Biednov (mykola.biednov@xfel.eu)

S 1.4

0.15

0.10

18980

18980

19000 Energy /e\

19010 Eneray /eV

(Resonant) X-ray absorption spectroscopy and scanning the mono

Nb₂O₂ thin

NbO₂ thin

film. ~10

mins.

film. ~10

mins.

0.002 X

0.004

-0.002

-0.004

p-p XAS at different delay times

EXPERIMENT 3435 FXE: Structure and electronic properties of excited states in CeO₂

Main proposer: Paola Luches Local contact: Yifeng Jiang

KAS

Scanning works well Setup needs to be checked carefully (I_{zero} signal levels, mono throughput

etc.) Reliable over the week (e.g. mono in/ out)

12

Call 12: Contact us with any questions or for more details

Email: <u>christopher.milne@xfel.eu</u> OR <u>fxe-support@xfel.eu</u>

https://www.xfel.eu/ facility/instruments/fxe/

> 100 fs time resolution X-rays from 4.6-20 keV Pump laser from 240 nm to 2 um

Liquids, solids, thin films, GDVN

X-scattering, diffraction and spectroscopy (limited SFX)