
SPB/SFX Instrument Update

EuXFEL Proposal Call 10

Richard Bean

SPB/SFX Interim Group Leader

10.11.2022



2SPB/SFX Update, EuXFEL Proposal Call 10 Dr Richard Bean, 10.11.2022 2

Reminder: Science cases at SPB/SFX

Serial Crystallography

Single Particle Imaging Megahertz microscopy (up to 24 keV)

Small Angle Scattering
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Reminder: SPB/SFX Instrument layout (SFX, SPI, Small angle)

~ 6 keV to ~15 keV

~3 µm and 300 nm spot sizes

1 Mpx AGIPD 

MHz rep rate capable

Optical pump laser

Timing tool & more…

• Mancuso et al., The [SPB/SFX] instrument at the European XFEL: initial installation, 

Journal of Synchrotron Radiation, 26, pp. 660-676 (2019)

https://journals.iucr.org/s/issues/2019/03/00/ig5074/index.html
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Sample delivery for SFX – 3D-printed Gas Dynamic Virtual Nozzles (GDVNs)

Double-flow focusing nozzles (DFFN)

Outer jet (Ethanol) focused by Helium stabilizes inner jet (Sample)

Oberthuer et al (2017) Scientific Reports 7:44628

Knoska et al (2020). Nat. Commun. 11, 657.

Standard GDVN

Sample (crystal suspension) is focused by Helium gas

Modified from Wiedorn et al (2018). Nat. Commun. 9, 4025.
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Protein crystal screening (PCS) beamtime at SPB/SFX

Two step procedure with users on-site

1. part: Injection tests / sample verification in the user labs

2. part: Beamtime at the SPB/SFX instrument (~3 hours)

In case sample is not jettable, sample will be considered for PCS beamtime in the next run

Injection performed and nozzles (GDVN and DFFN) provided by SEC Group

Data collection performed by SPB/SFX group

Simplified proposal form

For further information, please contact Katerina Dörner (SEC) prior to proposal submission: 

katerina.doerner@xfel.eu

mailto:katerina.doerner@xfel.eu
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Semi automatic SFX pipeline

Starting from HDF5 data sets in EuXFEL or Cheetah/CXI format, 

diffraction images are processed in 3 steps using CrystFEL tools, 

embedded to a workflow with SLURM interface for distributed 

computing.

(1) Initial crystallographic peak-finding and indexing of all detector 

images, followed by graphical determination of a crystal unit cell.

(2) Peak-finding and indexing in a low-scattering-angle detector area 

using the preliminary unit cell, followed by selection of the indexable 

image subset ("crystal hit frames") and unit cell refinement.

(3) Peak-finding, indexing and pixel intensity integration at predicted 

positions on a high-scattering-angle area using only the diffraction 

image subset, plus the refined unit cell. Crystallographic scaling and 

intensity averaging yields a unique reflection data set, suited to 

reconstruct the macromolecular structure (not yet part of the pipeline).

Preparative steps like (A) automatic conversion of EuXFEL data to the 

required CXI format in a "virtual" data set or (B) optional import of pixel 

masks into the detector geometry description file are also supported.



7SPB/SFX Update, EuXFEL Proposal Call 10 Dr Richard Bean, 10.11.2022 7

Reminder: SPB/SFX Instrument layout (MHz microscopy)

~12 keV to ~24 keV

~1mm beam size

MHz train capable Shimadzu cameras

Flexible sample environment
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Optical laser parameters

Please contact us for further details:

spb.sfx@xfel.eu

Optical laser system 1 properties

Wavelength 800 nm Tuneable from 750 to 850 nm (pulse 

duration is longer than 15 fs)

Pulse duration 15, 50 or 300 fs

Repetition rate 1.1 MHz Some quasi-arbitrary patterns 

possible.

Pulse energy 250 µJ

Wavelength conversion SHG, THG, OPA SHG: 375–425 nm, THG: 250–283 

nm, OPA: 400–2600 nm

Spot size (FWHM) ≥ 40 µm

Optical laser system 2 properties

Wavelength 1030 nm No wavelength tuneability

Pulse duration 0.85 or 400 ps

Repetition rate 1.1 MHz Some quasi-arbitrary patterns 

possible.

Pulse energy 4 mJ

Wavelength conversion SHG, THG, FHG SHG: 515 nm, THG: 343 nm, FHG: 

258 nm

Spot size (FWHM) ≥ 40 µm

Optical laser system 3 properties (Opolette 355 HE)

Wavelength 210 – 2400 nm OPO output

Pulse duration 3 – 7 ns

Repetition rate Single shot – 20Hz

Pulse energy 0.5 – 5 mJ Dependent on wavelength

Spot size (FWHM) ≥ 100 µm

Three of these systems can be operated simultaneously

Photon Arrival Monitor (PAM) timing tool available for micron beam experiments depending on 

experimental configuration. TOPAS available with limited pulse energy up to 1.1 MHz.

In these cases, discussion with instrument scientists before proposal submission is essential.

Please discuss your experiment plans with an SPB/SFX instrument scientist before submitting your 

proposal. They can help you with any details that may have updated, assist with evaluating experiment 

feasibility, and much more. Please note that for run 2023-02 we do not intend to host experiments at 

the in-helium IRDa interaction region. We expect that in-helium HVE and fixed target experiments will 

be available in run 2024-01.  

Contacts:

spb.sfx@xfel.eu sample.environment@xfel.eu useroffice@xfel.eu

SPB/SFX Instrument Parameters for User 

Experiments (run 2023-02) – page 2

Optical laser system 1 properties

Wavelength 800 nm Tuneable from 750 to 850 nm (pulse 

duration is longer than 15 fs)

Pulse duration 15, 50 or 300 fs

Repetition rate 1.1 MHz Some quasi-arbitrary patterns 

possible.

Pulse energy 250 µJ

Wavelength conversion SHG, THG, OPA SHG: 375–425 nm, THG: 250–283 

nm, OPA: 400–2600 nm

Spot size (FWHM) ≥ 40 µm

Optical laser system 2 properties

Wavelength 1030 nm No wavelength tuneability

Pulse duration 0.85 or 400 ps

Repetition rate 1.1 MHz Some quasi-arbitrary patterns 

possible.

Pulse energy 4 mJ

Wavelength conversion SHG, THG, FHG SHG: 515 nm, THG: 343 nm, FHG: 

258 nm

Spot size (FWHM) ≥ 40 µm

Optical laser system 3 properties (Opolette 355 HE)

Wavelength 210 – 2400 nm OPO output

Pulse duration 3 – 7 ns

Repetition rate Single shot – 20Hz

Pulse energy 0.5 – 5 mJ Dependent on wavelength

Spot size (FWHM) ≥ 100 µm

Three of these systems can be operated simultaneously

Photon Arrival Monitor (PAM) timing tool available for micron beam experiments depending on 

experimental configuration. TOPAS available with limited pulse energy up to 1.1 MHz.

In these cases, discussion with instrument scientists before proposal submission is essential.

Please discuss your experiment plans with an SPB/SFX instrument scientist before submitting your 

proposal. They can help you with any details that may have updated, assist with evaluating experiment 

feasibility, and much more. Please note that for run 2023-02 we do not intend to host experiments at 

the in-helium IRDa interaction region. We expect that in-helium HVE and fixed target experiments will 

be available in run 2024-01.  

Contacts:

spb.sfx@xfel.eu sample.environment@xfel.eu useroffice@xfel.eu

SPB/SFX Instrument Parameters for User 

Experiments (run 2023-02) – page 2
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Further details

richard.bean@xfel.eu

spb.sfx@xfel.eu

https://www.xfel.eu/facility/instruments/spb_sfx/index_eng.html

Photon beam parameters

Photon energy 6 - 12 keV Up to 15 keV potentially available

Pulse energy ≥2 mJ Typical at 9.3 keV

Photons per pulse (at source) ~1 x 1012 Derived from previous two fields (@ 9.3 keV)

Pulse duration 25 fs Estimated

Focal spot size (FWHM) ∽ 3 µm

< 200 nm

~1mm

Two KB mirror systems available

Direct beam microscopy (higher beam energies 

potentially available, up to 18 keV)  

Photons / µm² (at sample) > 1010 Derived. Includes abs, expected spot size range.

Train repetition rate 10 Hz

Intra-train repetition rate 1.1 MHz (4.5 MHz, 100 kHz, some quasi-arbitrary patterns)

ΔE/E ~0.2% Estimated

No. of bunches per train ≤352 Some quasi-arbitrary patterns possible.

Sample delivery systems:

In vacuum (upstream interaction region, 1 Mpx AGIPD)

Liquid jet injector rod ½“ nozzle rod with M9x1 mm fine thread nozzle mount compatible 

with the CXI nozzle rod at LCLS (MPI design), 1200 mm in length. 

Additionally, 25mm nozzle rod with M23 fine thread. 

Sample injection nozzles 

(GDVN and DFFN)

3D printed nozzles to produce µm-sized liquid jets. Other nozzle 

types also possible. Nozzles can be supplied by the SEC group.  

Please consult with the SEC group prior to proposal submission.

Aerosol injector Aerosol produced by electrospray. Other nebulizers also possible

Fixed target sample holder Various available. Please consult with instrument scientists prior 

to proposal submission.

Pressure systems HPLC pumps, syringe pumps, gas-pressurised sample reservoirs

AGIPD 1 Mpx detection properties

Number of pixels 1024 x 1024 4 quadrants, each 512 x 512 pixels

Pixel size 200 µm x 200 µm

Minimum sample–detector 

distance*

~129 mm Maximum 200 mm stroke

Resolution at edge @ 9.3 keV < 1.8 Å At minimum distance from sample

Max sample-detector distance ~ 5.5 m

Hole size 8 mm. Possibly 

~5 mm—large

Quadrant configuration tuneable to suit 

expected signal

01/11/2022

SPB/SFX Instrument Parameters for User 

Experiments (run 2023-02)

Optical laser system 1 properties

Wavelength 800 nm Tuneable from 750 to 850 nm (pulse 

duration is longer than 15 fs)

Pulse duration 15, 50 or 300 fs

Repetition rate 1.1 MHz Some quasi-arbitrary patterns 

possible.

Pulse energy 250 µJ

Wavelength conversion SHG, THG, OPA SHG: 375–425 nm, THG: 250–283 

nm, OPA: 400–2600 nm

Spot size (FWHM) ≥ 40 µm

Optical laser system 2 properties

Wavelength 1030 nm No wavelength tuneability

Pulse duration 0.85 or 400 ps

Repetition rate 1.1 MHz Some quasi-arbitrary patterns 

possible.

Pulse energy 4 mJ

Wavelength conversion SHG, THG, FHG SHG: 515 nm, THG: 343 nm, FHG: 

258 nm

Spot size (FWHM) ≥ 40 µm

Optical laser system 3 properties (Opolette 355 HE)

Wavelength 210 – 2400 nm OPO output

Pulse duration 3 – 7 ns

Repetition rate Single shot – 20Hz

Pulse energy 0.5 – 5 mJ Dependent on wavelength

Spot size (FWHM) ≥ 100 µm

Three of these systems can be operated simultaneously

Photon Arrival Monitor (PAM) timing tool available for micron beam experiments depending on 

experimental configuration. TOPAS available with limited pulse energy up to 1.1 MHz.

In these cases, discussion with instrument scientists before proposal submission is essential.

Please discuss your experiment plans with an SPB/SFX instrument scientist before submitting your 

proposal. They can help you with any details that may have updated, assist with evaluating experiment 

feasibility, and much more. Please note that for run 2023-02 we do not intend to host experiments at 

the in-helium IRDa interaction region. We expect that in-helium HVE and fixed target experiments will 

be available in run 2024-01.  

Contacts:

spb.sfx@xfel.eu sample.environment@xfel.eu useroffice@xfel.eu

SPB/SFX Instrument Parameters for User 

Experiments (run 2023-02) – page 2

For run 2023-02 we do not intend to host experiments at the 

in-helium IRDa interaction region 

We expect that in-helium HVE and fixed target experiments will 

be available in run 2024-01  

mailto:adrian.mancuso@xfel.eu
mailto:spb.sfx@xfel.eu
https://www.xfel.eu/facility/instruments/spb_sfx/index_eng.html
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