Small Quantum Systems (SQS)

M. Meyer SQS scientific instrument

Townhall meeting, November 10, 2022

Soft X-Rays (250 – 3000 eV)

- Study of non-linear phenomena
- Time-resolved investigations
- Coherent Diffraction Imaging

SASE3 Soft X-Ray radiation parameters

Photon Beam	Unit	Operation 2023	Final Operation
Parameter		RUN 10	
Electron energy	GeV	8.0, 11.5, 14, 16.3	8.0, 11.5, 16.5, 17
Photon energy	eV	250 - 1000 (@ 8.0 GeV) 500 - 1500 (@ 11.5 GeV) 660 - 2500 (@ 14 GeV) 920 - 3000 (@ 16.5 GeV) fully tunable !!	0.25 – 3
Spectral Bandwidth	%	~1% in SASE mode or monochromatized (resolution: 3000 @ 870 eV)	0.5 (SASE mode) 0.01 (monochromator)
Pulse duration (calc.)	fs	10 - 25 (FWHM)	2 - 100
Pulse energy	mJ	up to 10 (depending on photon energy)	Up to 10
Number of pulses		up to 400 per train (@ 1.1 MHZ)	2700 per train (@4.5 MHz)
Polarization		linear	Linear & circular
Focus size	μm	1 – 2 (@ F1 / F1') 2 – 3 (@ F2)	0.5 – 2

Scientific scope of SQS

Investigations of atoms, ions, molecules and clusters in intense fields and of non-linear phenomena

REMI

REaction MIcroscope

10-25 fs

Time-resolved studies

AQS Atomic-like Quantum Systems

10¹⁸ W/cm² Non-linear spectroscopy

Doped He droplet

AQS experimental chamber

Targets: atoms & molecules Detection: electrons, ions, photons

Sample delivery:

- Supersonic molecular beam
- Effusive gas jet (capillary)
 - European XFEL

M. Meyer, Townhall meeting, November 10, 2022

AQS: Atomic-like Quantum Systems

- 6 eTOFs High energy resolution Non-dipole studies
- ionTOF High mass resolution
- VMI Angular distribution e / ion – coincidences
- MBES High electron acceptance e-e, e-ion coincidences

Example: Non-linear Spectroscopy Double Core Hole Resonances in Neon

M. Meyer, Townhall meeting, November 10, 2022

AQS experimental chamber

1D-Imaging XUV Spectrometer

In-kind contribution: J. Nordgren, J.E. Rubensson (U Uppsala)

Energy range: 140 – 1150 eV, res. 100meV @ 540 eV

Source size : 2 mm, resolution: 15 µm European XFEL

First user experiment in Nov. 2022

NQS experimental chamber

Targets: Cluster, Nano-particles, bio-molecules Detection: electrons, ions, photons

Sample delivery:

- Rare gas cluster / He-droplet source
- Aerosol source
- COMO set-up (J. Küpper / CFEL)

M. Meyer, Townhall meeting, November 10, 2022

NQS: Nano-sized Quantum Systems

- ionTOF Fragmentation products
- VMI Angular distribution
- Large area pixel detectors Coherent diffraction imaging

Parameter	pnCCD	Mini-SDD
Energy range	0.03-25 keV	0.5-6 keV
Detectorsize	$78 \times 78 \text{ mm}^2$	$210 \text{ x} 210 \text{ mm}^2$
Numberofpixels	1024 x 1024	1024 x 1024
Sensor pixel size	$\sim 75 \; x \; 75 \; \mu m^2$	$\sim 236x236\mu m^2$
Dynamic range	>6000 ph @ 1 keV	256 ph @ 1 keV
Frame rate	Up to 150 Hz	0.9 – 4.5 MHz
Read-out of frames	1 @ 10Hz	800@10Hz
Vacuum conditions	< 10 ⁻⁸ mbar	10 ⁻⁷ mbar

NQS experimental chamber

Targets: Cluster, Nano-particles, bio-molecules **Detection: electrons, ions, photons**

Sample delivery:

- Rare gas cluster / He-droplet source
- Aerosol source
- COMO set-up (J. Küpper / CFEL)

NQS: Nano-size Quantum Systems

VMI **Angular distribution**

field

ions or

electrons

MCP + phosphor

camera

supersonic jet

X-ray

pulse

electrons and ions 256 x 256 pixel 200 kHz for ions 2 MHz for electrons

SQS-REMI experimental chamber

Targets: molecules Detection: electrons, ions

User contribution U. Frankfurt (R. Dörner et al.)

SQS-REMI Reaction Microscope

COLTRIMS set-up (Cold Target Recoil Ion Momentum Spectroscopy)

Electron & Ion Momentum Imaging

Coincidence Spectroscopy

Coulomb Explosion Imaging

Coulomb explosion imaging (CEI)

Time-resolved experiments

R. Boll et al., Nat. Phys. 18, 423 (2022)

lodopyridine

Time-resolved experiments

X-Ray - Optical Pump-Probe

Pump-Probe Laser (M. Lederer et al.)

< 20 fs, 800 nm, 0.2 mJ at 1.1MHz < 20 fs, 800 nm, 1 mJ at 188 kHz

SQS extension (T. Mullins et al.)

SHG: 400 nm, ~0.1 mJ, (30 fs) THG: 266 nm, <10 μJ, 30 fs

Other wavelength (UV and IR) in preparation. Contact SQS for further Information!!!

> Pulse Arrival Time Monitor Synchronization < 20 fs

M. Meyer, Townhall meeting, November 10, 2022

2-Color Pump Probe (2CPP) X-ray – X-ray Pump-Probe

Magnetic chicane in SASE3 undulator

Photon energy range: $500 - 1500 \text{ eV} (\rightarrow 3000 \text{ eV})$

Pulse energy: up to 1 mJ

Pulse duration: < 30 fs

Temporal delay: up to 1 ps

Operation in close collaboration with S. Serkez & G. Geloni

RUN 10: August – November 2023

https://www.xfel.eu/facility/instruments/sqs

SQS:	Michael.Meyer@xfel.eu	
AQS:	Alberto.DeFanis@xfel.eu	
NQS:	Yevheniy.Ovcharenko@xfel.eu	
REMI:	Rebecca.Boll@xfel.eu	
Laser:	Terry.Mullins@xfel.eu	
X-ray beam transport:	Tommaso.Mazza@xfel.eu	

or simply <u>sqs@xfel.eu</u>

RUN 10: August – November 2023

https://www.xfel.eu/facility/instruments/sqs

