SCS instrument

European XFEL

European XFEL Virtual User Information Meeting 9th $^{\text {th }}$ Call for Proposals

Andreas Scherz

Spectroscopy and Coherent Scattering (SCS instrument)
12. May 2022

Scientific Instrument SCS

9th Call for Proposals: FFT and CHEM

We are happy to accept proposals for two experiment stations in this call: the forward-scattering fixed target (FFT) experiment station and the CHEM experiment station with liquid jet environment. FFT station can be combined with detectors for Small-Angle X-ray Scattering (SAXS), Coherent diffraction imaging (CDI), X-ray photon correlation spectroscopy (XPCS) as well as X-ray Absorption Spectroscopy (XAS). The afterburner Apple-X is in commissioning this year and will offer to users of this call circular and linear polarizations with basic functionality for instance for ultrafast magnetic studies exploiting magnetic CDI or X-ray Magnetic Circular Dichroism (XMCD) methodologies. The CHEM station holds a liquid-jet sample environment for Resonant Inelastic X-ray Scattering (RIXS) in back-scattering geometry. While other configurations are accepted, we have a standard configuration for the CHEM-RIXS.

9th-Call-for-Proposals: FFT \& CHEM

SCS instrument and beam parameters 9th Call-for-Proposals, scheduled for the first half of 2023

9th-Call-for-Proposals: Standard Configuration

SCS standard configuration CHEM
9th Call-for-Proposals, scheduled for the first half of 2023
download

Please contact the SCS team for further technical information about instrumentation in operation and discuss your experiment plans before submitting your proposal.

$$
\begin{aligned}
& \text { contact us: } \\
& \text { scs@xfel.eu }
\end{aligned}
$$

SCS instrumentation for forward scattering geometries

Science at SCS with FFT

Study of electron and spin dynamics

Thielemann-Kühn, et al.., arXiv:2106.09999

Laser-driven phase transitions

Agarwal, PhD thesis UHH (2022)

Spin-lattice coupling in nanostructures

Turenne et al., Science Advances (2022)

Spin-orbit-driven topological systems
Büttner, et al.., Nature materials (2021)

FFT Experimental apparatus for XAS and SAXS / CDI

DSSC Detector for CDI, SAXS, XPCS

DSSC detector	SAXS, CDI, BOZ-XAS/XMCD, XPCS	
Number of pixels	1024×1024	Detector quadrants in windmill configuration
Pixel coordinates	Hexagonal	
Pixel size	$204 \mu \mathrm{~m} \mathrm{x} \mathrm{236} \mu \mathrm{m}$	The diameter of the central
Max frame rate	4.5 MHz	dead area is 8 mm.
Beam hole size	Default: 4.75 mm (windmill)	
Standard detector-to- sample distance	Min: 1.24 m Max: 5.40 m Travel range: 1.5 m (under vacuum)	

Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging

Hagström, et al.., arXiv:2201.06350(2022)

Pi-MTE3 commercial detector option

PI-MTE3 Detector
Number Pixels / Size

Frame rate
detector-sample distance
55-820 mm

EuXFEL APPLE-X (UE90) Variable Polarization at SA3:

Linear horizontal, linear vertical, left and right circular Polarizations

- Installed during winter shutdown 21/22
- Commissioning in 2022
- Basic Functionality in 2023

Beam-splitting off-axis zone plate for shot-noise limited MHz transient absorption

 spectroscopy with the DSSC detector

Le Guyader, et al., in preparation (2022)
a)

b)

CHEM-RIXS at the SCS Instrument, $9^{\text {th }}$ Call for Proposals

Spectroscopy and Coherent Scattering (SCS):

- Soft x-ray beamline $0.5-3 \mathrm{keV}$
- Time-resolved/ non-linear x-ray spectroscopies
- Time-resolved/ non-linear x-ray diffraction
- Forward- / small-angle scattering geometries

RIXS

- Solid samples
- Liquid-jet samples

hRIXS parameters for run $9^{\text {th }}$

hRIXS parameters	
Photon energy	$0.5-1.5 \mathrm{keV}$
Combined resolving power	Up to 10.000 (mono HR)
	3.000 (mono LR)
Transmission	$\sim 10-6$
Time resolution	Limited by mono: Scattering angle $->$ CHEM $\quad 90-50 \mathrm{fs}$ (mono HR)

CHEM experiment station with liquid-jet sample environment

European XFEL

CHEM station is optimized for time-resolved high-resolution RIXS studies of chemical samples in the liquid phase
environment

Sample delivery	Liquid jet, single cylinder, 20-50 $\mu \mathrm{m}$	Standard configuration
RIXS scattering angle	$125 \mathrm{deg}, 90$ deg	Standard configuration: 125 deg
Solvents	Water, Ethanol, Isopropanol*	Standard configuration. *) Inquire for alternative solvents

Time-Resolved RIXS: Standard Configuration

Focal spot size at sample, tunable	$10-30 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$ hor. \& ver. tunable			
Sample delivery	$20-50 \mu \mathrm{~m}$ liquid jet, single cylinder			
Solvents	Water, Ethanol, Isopropanol			
RIXS scattering angle	125 deg		Optical laser	$800 \mathrm{~nm}: 0.2 \mathrm{~mJ}(1.1 \mathrm{MHz})-2 \mathrm{~mJ}(0.113 \mathrm{kHz})$, $400 \mathrm{~nm}(\mathrm{SHG}), 266 \mathrm{~nm}(\mathrm{THG})$ via conversion from $800 \mathrm{~nm} ;$ spot size $\sim 100 \mu \mathrm{~m} ;$ Linear, circular polarization
:---	:---	RIXS on transition metal complexes in solution (water and alcohols)		

Concentration 10's of mM and greater

- Laser In-coupling with 800, 400, or 266 nm laser excitation

Optical delivery

- Pump-Probe laser (fundamental 800 nm)Up to $2 \mathrm{~mJ} /$ pulse @ 113 kHz , up to $0.2 \mathrm{~mJ} /$ pulse @ 1.1 MHz15 or 50 fsSHG (400 nm) and THG (266 nm) availableTOPAS (Tunable OPA pumped by PP laser): $250 \mathrm{~nm}-10 \mu \mathrm{~m}$ up to $0.2 \mathrm{~mJ} /$ pulse

Successful experiments so far:

THG (266 nm), SHG (400 nm),
$500 \mathrm{~nm}, 633 \mathrm{~nm}, 800 \mathrm{~nm}, 1100 \mathrm{~nm}, 1300 \mathrm{~nm}, 2500 \mathrm{~nm}$1030 nm long pulse (>800 fs), $40 \mathrm{~mJ} /$ pulse also availableTemporal stability
New feedback on Beam Arrival Monitors (BAM)

- Spatial stability

Focused beam monitored every train

Scientific Instrument SCS

9th Call for Proposals: FFT and CHEM

We are happy to accept proposals for two experiment stations in this call: the forward-scattering fixed target (FFT) experiment station and the CHEM experiment station with liquid jet environment FFT station can be combined with detectors for Small-Angle X-ray Scattering (SAXS), Coherent diffraction imaging (CDI), X-ray photon correlation spectroscopy (XPCS) as well as X-ray Absorption Spectroscopy (XAS). The afterburner Apple-X is in commissioning this year and will offer to users of this call circular and linear polarizations with basic functionality for instance for ultrafast magnetic studies exploiting magnetic CDI or X-ray Magnetic Circular Dichroism (XMCD) methodologies. The CHEM station holds a liquid-jet sample environment for Resonant Inelastic X-ray Scattering (RIXS) in back-scattering geometry. While other configurations are accepted, we have a standard configuration for the CHEM-RIXS.

9th-Call-for-Proposals: FFT \& CHEM

SCS instrument and beam parameters 9th Call-for-Proposals, scheduled for the first half of 2023

DOwnload

9th-Call-for-Proposals: Standard Configuration

SCS standard configuration CHEM
9th Call-for-Proposals, scheduled for the first half of 2023
download

Please contact the SCS team for further technical information about instrumentation in operation and discuss your experiment plans before submitting your proposal.

$$
\begin{aligned}
& \text { contact us: } \\
& \text { scs@xfel.eu }
\end{aligned}
$$

