Online calibration and analysis

Steve Aplin Data Department EuXFEL

Material Provided by Philipp Schmidt (Data Analysis Group)

Time structure of data analysis

•

Freshness

Online analysis
In real time during the
experiment, delay of up to a
few seconds

- Immediate feedback to run the experiment
- Performance critical
- Inflexible once prepared
- up to 15 GiB/s for AGIPD detector

Near-online analysis

Manually performed during the
experiment within minutes of
taking data

- Guides experimental decisions
- "Quick'n'dirty"
- Offers some degree of exploration
- Adapted quickly
- Typical run up to 1 TiB

Completeness

Offline analysis

Publication-quality analysis, may take from hours to months

- Often "after the fact"
- All freedom and flexibility in the world
- Take all measured data into account, up to several PiB

Time structure of data analysis

_

Online analysis
In real time during the
experiment, delay of up to a

few seconds

Freshness

Immediate feedback to run the experiment

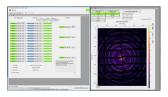
- Performance critical
- Inflexible once prepared
- up to 15 GiB/s for AGIPD detector

Near-online analysis
Manually performed during the
experiment within minutes of
taking data

- Guides experimental decisions
- "Quick'n'dirty"
- Offers some degree of exploration
- Adapted quickly
- Typical run up to 1 TiB

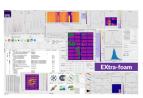
Completeness

Offline analysis

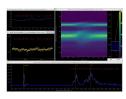

Publication-quality analysis, m take from hours to months

- Often "after the fact"
- All freedom and flexibility in the world
- Take all measured data into account, up to several PiB

Solutions to serve online analysis at EuXFEL


accessible <

karabo-gui


Data preview for diagnostics and monitoring

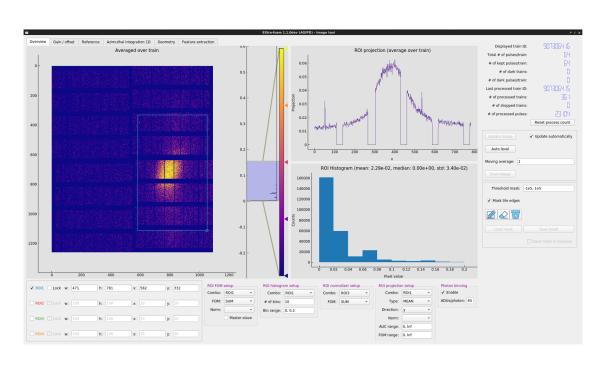
EXtra-foam

Rich GUI with common analysis features

EXtra-metro

Programmable in realtime to perform any analysis

karabo-bridge

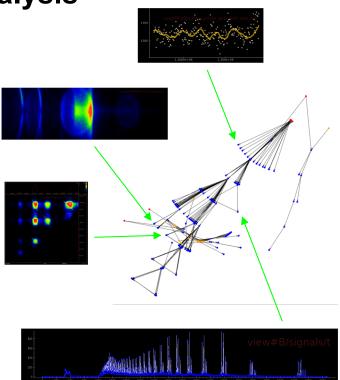


Stream data to an external application

flexible

Graphical analysis in EXtra-foam

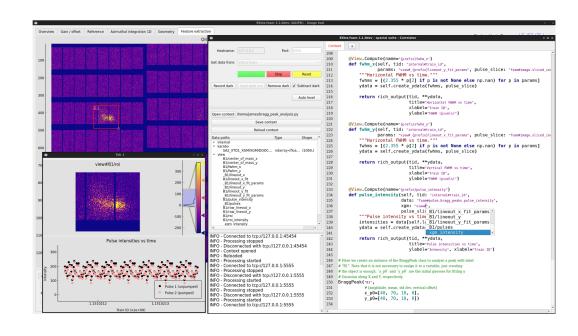
- Rich GUI for 2D imaging experiments
- Provides many commonly used features ready-to-go
- Small *special suites* for graphical analysis of special experiments
- Analysis functionality exposed as Python library, core implemented in C++


Steve Aplin, European XFEL

EXtra-metro for programmable online analysis

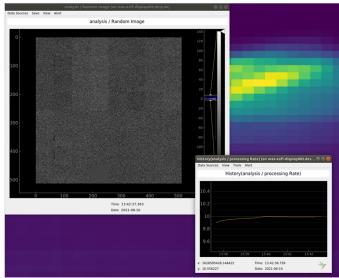
- Make writing online analysis easy
- Express analysis as a series of small steps, each result may be visualized
- Written in code that may be changed and re-injected at runtime
- Concentrate on the physics not the boilerplate, and let the framework take care of I/O or parallelization

```
@View.Vector
def xgm_by_pulse(pulses: 'SA3_XTD10_XGM/XGM/DOOCS:output.data.intensitySa3TD'):
    """Pulse-resolved XGM intensity."""
    return pulses

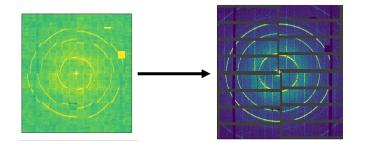

@View.Scalar
def xgm_train_avg(pulses: 'xgm_by_pulse'):
    """Train-averaged XGM intensity."""
    return pulses.mean(axis=0)
```


The best of both worlds: <u>EXtra-foam</u> + <u>EXtra-metro</u>

- Combine accessible GUI capabilities of EXtra-foam with optional programmability with EXtra-metro code
- Access to all the direct data from Karabo and precomputed EXtra-foam results
- Adapt now and without an expert:


 The best ideas happen right during a beamtime

Streaming data to users via karabo-bridge


- Stream any data via open protocol, client library available in Python, C++
- Allows integration of externally developed tools and used for in-house developed analysis GUIs

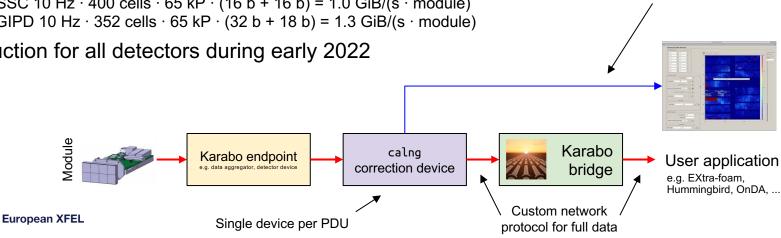
```
>>> from karabo_bridge import Client
>>> krb_client = Client('tcp://server-host-name:12345')
>>> data, metadata = krb_client.next()
>>> data.keys()
dict_keys(['source1', 'source2', 'source3'])
>>> data['source1'].keys()
dict_keys(['param1', 'param2'])
>>> metadata['source1']
{'source1': {'source1': 'source1',
   'timestamp': 1528476983.744877,
   'timestamp.frac': '744877000000000000',
   'timestamp.sec': '1528476983',
   'timestamp.tid': 100000000073}}
```


Detector corrections in real time

- For monitoring detector health and serious online analysis, detector data needs to be corrected live
- Previously only possible for a fraction of data
 - up to 1 Hz of trains with all pulses for *fast* detectors, even less streamed to users for analysis
 - closer to 10 Hz for *slow* detectors like JF or pnCCD
- Bottleneck is less computationally and most more I/O, moving around up to 21 GiB/s is a challenge on general purpose hardware

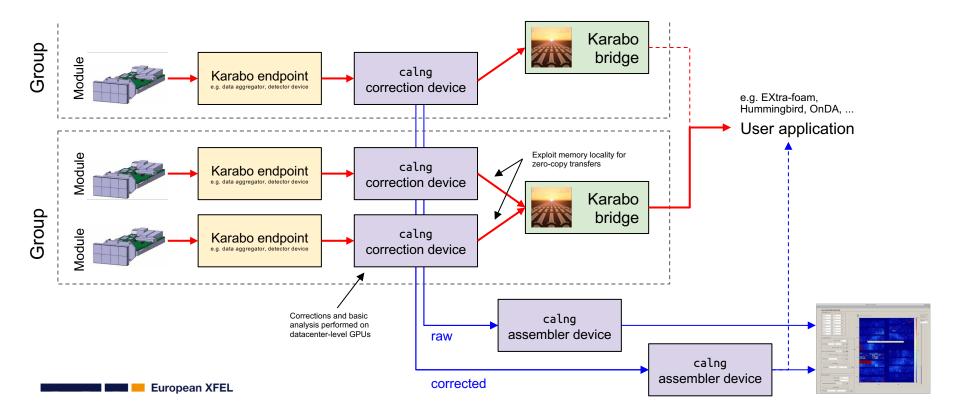
Scale online corrections to MHz

- Investigation into performance limits beginning of this year
 - With our current knowledge of how to correct an AGIPD and a clean state, what can be achieved?

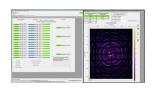

- Promising results after a few weeks of profiling and prototyping:
 - Standalone, correcting data at up to 40 Hz is possible
 - Using GPUs for fast detectors is sound but requires special attention
- Scaffolded prototype for early field test in collaboration with users & instrument
 - SQS-DSSC in September
 - Stable operation of 10 Hz and 800 pulses
 - User application able to ingest all pulses of inner modules for fast feedback
 - After detector move used regularly at SCS
 - SPB-AGIPD in November
 - Achieved ≥ 3 Hz and 352 pulses
 - Investigation into new performance issues ongoing

Pick the train and

pulse to preview early

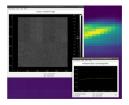

New online calibration software calng

- Design goals from past operation experience
 - Reliable low latency karabo-gui preview
 - Enable online analysis with as much data as possible
 - Configurable and robust: Never run silently
 - Scaling up to network limit
 - 7 GiB/s currently, to be upgraded
 - DSSC 10 Hz \cdot 400 cells \cdot 65 kP \cdot (16 b + 16 b) = 1.0 GiB/(s \cdot module) AGIPD 10 Hz · 352 cells · 65 kP · (32 b + 18 b) = 1.3 GiB/(s · module)
- Introduction for all detectors during early 2022


New online calibration software calng

Full data (up to 10 Hz and all frames) Preview data (up to 10 Hz and single frame)

Online calibration and analysis


- Covering diverse requirements for online analysis with a set of niche solutions
- "Online analysis" baseline via Karabo control system
- Standalone GUI <u>EXtra-foam</u> for online analysis, covering lowest common denominator of experimental methods (Fast 2D imaging)
- Programmable analysis <u>EXtra-metro</u> for ultimate flexibility
- Streaming data via karabo-bridge to integrate community tools
- Progress on performing full detector calibration online for MHz detectors and delivering data to online analysis

