

Robert Carley

Spectroscopy and Coherent Scattering (SCS) Instrument

European XFEL

The pump-probe (PP) laser in SASE 3

Pump-probe laser at EuXFEL

M. Pergament et al. Optics Express 22 (18) 22202 (2014) DOI:10.1364/OE.22.022202 M. Pergament et al. Optics Express 24 (26), 29349 (2016) DOI: 10.1364/OE.24.029349

Pulse Patterns

Train and pulse patterns

- 600 µs burst
- 10 Hz
- 1 2700 pulses
- Up to 4.5 MHz pulse repetition frequency
- Arbitrary patterns possible
- PP laser pattern matches X-ray pattern

PP Laser Operating Points

				800 nm	1030 nm
Mode	F_rep / MHz	∆t / ns	F_eff / kHz	E_pulse / mJ	E_pulse / mJ
1	4.5	222	27	0.05	1
2	1.1	1000	6	0.2	4
4	0.564	2000	3	0.4	10
5	0.113	10000	0.6	2	40
		Pulse duration		15 fs or 50 fs	<1ps or 800 fs

Wide flexibility in repetition rate and pulse duration

Frequency conversion

Harmonic generation

800 nm (50 fs) \rightarrow 400 nm (60 fs) and 266nm (90 fs)

Optical parametric amplifier (TOPAS from Light Conversion)

800 nm, 50 fs

- 2 mJ pump at 113 kHz
- 400 uJ pump at 564 kHz
 Tuneable between UV and mid IR
- Safer to use the strongest outputs
- User experiments with 550 nm,630nm, 1300 nm, and 2500 nm

TOPAS outputs at 113 kHz

Frequency converion: THz

• BNA pumped with 15 fs, 2 mJ, 113 kHz

N-Benzyl-2-methyl-4-nitroaniline

https://www.chemspider.com/Chemical-Structure.2127659.html

Ilie Radu, European XFEL

In-coupling can be used for other wavelengths...

Upcoming: Herriott multi-pass cell (HMPC)

Input: 1030 nm, 850 fs, 2 mJ at 1.1 MHz	0.5
Output: 1030 nm, 40 fs to 150 fs, 1.8 mJ at 1.1 MHz SHG at 515 nm	ty(a.u.)
THG at 345 nm	1 tensi

10 times higher pulse energy than at 800 nm at 1.1 MHz

Optics Letters Vol. 46, Issue 20, pp. 5264-5267 (2021) doi.org/10.1364/OL.442707

Upcoming: Tunable THz and mid-IR

- Herriott multi-pass cell output pumps two OPAs
 - 150 fs, 1 mJ, 1.1 MHz
- Orpheus OPAs with common white light source
 - Carrier phase stable mid-IR and THz
- DFG between two OPA signals for tunable THz
 - Relaxes signal-idler DFG contraints

B. Liu et al., Optics Letters 42 (1) 129 (2017) doi.org/10.1364/OL.42.000129

https://lightcon.com/product/orpheus-mid-ir-opa/

Tunable THz and mid-IR - Timeline

- LAS currently have an operational HMPC compressor and one OPA for testing
- Second OPA arrives in March
- Set up in LAS R&D lab
- White light testing
- Installation at SCS Summer 2025
- Commissioning with PPL Autumn 2025
- Commissioning with FEL at XRD+RIXS early 2026

Upcoming: OPA output at 1.1 MHz

1030 nm, 850

fs, 2 mJ,

1.1 MHz

- OPA output similar to TOPAS but 10 times higher repetition rate
 - ca. 100 uJ at 1.1 MHz

- Tunable two-color excitation
- Post compression
 - 150 fs to few fs in Heriott cell or hollow-core fiber

Upcoming: tunable visible and UV

- Gas-filled hollow-core fibers
 - Resonant dispersive wave NIR → tunable visible to UV pulses, self compressed to few femtoseconds
- SQS has tested this with the PP laser
 - Fiber 1: HMPC output compressed to <10 fs
 - Fiber 2: Resonant dispersive wave NIR → tunable visible to UV pulses, self compressed to few femtoseconds
 - High repetition rate performance may be problematic
- Tunable UV with high pulse energy and very short pulses
 - CHEM
 - Attosecond science

J. Travers et al., Nature Photonics 13, 547, 2019. https://doi.org/10.1038/s41566-019-0416-4

Upcoming: tunable visible and UV

- Space is a challenge
- In-coupling to experiments is a challenge
 - Limited optics
 - Windows stretch pulses
- Getting longer pulses (e.g. 15 fs) is an area of active research

Summary

- Standard operation: 800nm, 15fs 50 fs,
 - SHG and THG at 50 fs
 - SHG at 15 fs needs optimization
 - THG does not yield useable pulse energy
 - OPA for tunability
 - Limited by pulse energy at high repetition rate
 - THz with organic crystals: few THz, single cycle.
- Outlook
 - THz pumping at CHEM and FFT
 - Heriott multipass cell mJ at MHz (10 times current repetition rate)
 - MHz OPA operation
 - Tunable THz and mid-IR
 - Hollow-core fiber and RDW for tunable visible and UV few-fs pulses

Thank you for your attention!

X-ray optical pulse arrival monitor based on spintronic THz emitters

Or keV to meV extreme non-linear frequency downconversion

THz emission and PAM experiment at SCS

- Put setup upstream of KBS
- Perform simultaneous transient reflectivity at FFT

Upcoming: Herriot multi-pass cell (HMPC)

SHG-FROG

Chirped mirrors

1030 nm, 40 - 150 fs, 1.8 mJ, 1.1 MHz, SHG and THG

Optics Letters Vol. 46, Issue 20, pp. 5264-5267 (2021) doi.org/10.1364/OL.442707

Spintronic THz emitters (STE)

- Excitation of FM layer creates spin current, Js.
- Js flows into the adjacent NM materials.
- Inverse spin Hall effect: large SOE converts Js in real current, Jc.
- Moving charges emit EM radiation in the THz.
- The NM layer have opposite SOE so the emitted radiation adds coherently.

W (1.8nm) / Co₂₀Fe₆₀B₂₀ (2 nm) / Pt (1.8 nm)

T. Seifert, et al., "Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm⁻¹ from a metallic spintronic emitter," Appl. Phys. Lett. 110, 252402 (2017)

Multilayer STEs

Seifert, T et al., Nature Photon 10, 483 (2016) DOI:10.1038/nphoton.2016.91

Spintronic THz emitters (STE)

- Excitation with 30 fs, 20 nm pulses at Fermi
- 1 THz: 300 μm wavelength or 4 meV photon energy

Sample composition

- SiC on Si with STE
- SiC transparent to x-rays
- STE absorbs a few percent
- Suitable for parasitic operation

THz emission and PAM experiment at SCS

- Put setup upstream of KBS
- Perform simultaneous transient reflectivity at FFT

Overnight data acquisition

- About 5 hours measured
 - FEL: 28pulses @ 282 kHz, 905 eV, PPL 15 fs
 - PPL: 56 PPL @ 564 kHz, 800 nm, 15 fs, chirped • with some glass (FS, SF57, SF11)
 - difference between pumped and unpumped, ٠ average over all pulses in a train
 - GOTTHARD I detectors not fully gain calibrated ٠ giving vertical stripes.
- Simultaneous measurement of arrival time at THz EOS and PAM
- Both show shifts that qualitatively matches the BAM trend
- Spectra show a shifts that qualitatively matches the BAM trend

-10

-30

Improved Woody's algorithm to extract time arrival

3.3 hours of data

THz E-field (arb. units)

-1.0

-0.5

- Each train is averaged over 28 • pulses
- Captures the long term drift •

PAM-PAM correlation

 Cannot extract meaningful pulse arrival data from the reflectivity data

 Probably due to instability of PPL spectrum during this run (since corrected).

PPL spectrum

Spectrally encoded electro-optic sampling

PAM-BAM correlation

- THz deviates for positive jitter. Cause unknown.
- Efficacy of BAM feedback is clear on short

term.

Electro-optic sampling

Pump-probe laser at EuXFEL

- Three SASEs
 - Each with two Instruments and a PP laser run by dedicated group
 - Fiber front end
 - Yb:YAG Innoslab amplifer producing 1030 nm, 800 fs
 - NOPA for each instrument generating 800 nm at 15 fs or < 50 fs
 - Repetition operating points
 - 113 kHz (2 mJ) , 563 kHz (400 μJ), 1.1 MHz (200 μJ), 4.5 MHz (50 μJ)

SASE 3 Experimental Area

- 80% of user proposals call for optical laser
- Large, high power system
- Matches FEL burst pattern
- Burst mode adds complexity
- Reduced stability compared to CW, e.g. 100 kHz
- Run by separate group
- Requires maintenance
- Limited beam availability for testing and setup
- Long beam path

Outlook: THz pump – RIXS probe

Outlook: THz pump – RIXS probe

• BNA pumped with 15fs, 2mJ, 113kHz

N-Benzyl-2-methyl-4-nitroaniline

https://www.chemspider.com/Chemical-Structure.2127659.html

Ilie Radu, EuXFEL

Outlook: THz at SCS

- Further THz source development
 - Heriott cell post compression at 1030nm, 1.1MHz
 - 50 150 fs, 2 mJ, 1.1 MHz
 - SHG and THG
 - Pump two Orpheus OPAs with common white light source
 - DFG between two OPA signals for tunable THz
- Visible and UV sources ...

https://www.xfel.eu/facility/overview/index_eng.html

Hall effects

https://commons.wikimedia.org/wiki/File:Hall_Effect_Measurement_Setup_for_Electrons.png

Sinova et al. Rev. Mod. Phys. 87,1213, (2015) DOI: 10.1103/RevModPhys.87.1213

European XFEL

https://www.xfel.eu/facility/beamlines/index_eng.html

Conversion results with 800 nm at 113 kHz

