Beam transport of short pulses and new spectroscopic capabilities

<u>Natalia Gerasimova</u>, on belhalf of SCS group (with contributions from XRO, ME and FEL R&D)

European XFEL, Germany

Status and development of SCS Instrument, Hamburg, 23.01.2025

SASE3: Soft X-ray beamline

SASE3 beamline:

Operational range: 250 eV – 3000 eV (experiments performed in the range 380eV – 3000eV)

Reflective optical elements, grating monochromator

SASE3 Monochromator:

To provide further monochromatization of the FEL beam (FEL bandwidth 0.2 – 1% in the soft X ray range)

Goal **resolving power**: 5.000 & 20.000

Beam transport **close to transform limit**

SASE3 beamline: layout, monochromatic operation

European XFEL

H. Sinn et al., Technical design report: X-ray Optics and Beam Transport (2012); XFEL.EU TR-2012-006

4

SASE3 beamline: layout

European XFEL

Base-line grating: line density

Grating	Low-resolution	
	design grating	
Optical surface size	500 mm x 25 mm	
Slope error, RMS	< 50 nrad	
Height error, PV	< 3 nm	
Roughness, RMS	< 0.2 nm	
Included angle	π - 18 mrad, π - 40 mrad	
VLS law:	n(w)=b0+b1*w+b2*w ² +	
Central line density b0	50 l/mm	
b1	1.01*10 ⁻³ l/mm ²	
b2	0 l/mm ³	
Groove profile	Blazed, 0.1° blaze angle	

Base-line grating

Grating	Low-resolution	Low-resolution	High-resolution
	design grating	installed grating	installed grating
Optical surface size	500 mm x 25 mm	120 mm x 17 mm	120 mm x 20 mm
Slope error, RMS	< 50 nrad	200 nrad	130 nrad
Height error, PV	< 3 nm	6 nm	3.6 nm
Roughness, RMS	< 0.2 nm	<0.2 nm	<0.6 nm
Included angle	π - 18 mrad, π - 40 mrad		
VLS law:	$n(w)=b0+b1*w+b2*w^2+$		
Central line density b0	50 l/mm	50.05 l/mm	150 l/mm
b1	1.01*10 ⁻³ l/mm ²	1.0*10 ⁻³ l/mm ²	3.029*10 ⁻³ l/mm ²
b2	0 l/mm ³	-1.2*10 ⁻⁶ l/mm ³	-8.7*10 ⁻⁸ l/mm ³
Groove profile	0.1° blaze angle	Laminar, 16 nm depth	Laminar, 16 nm depth

7

Geometrical transmission

N. Gerasimova et al., J. Synchrotron Rad. 29, 1299 (2022).

Transmission

N. Gerasimova et al., J. Synchrotron Rad. 29, 1299 (2022).

Resolving power $E/\Delta E$ and pulse stretching

N. Gerasimova et al., J. Synchrotron Rad. 29, 1299 (2022).

Pulse stretching by grating

Pulse stretching may be reduced by closing an aperture before the grating *along with reduction of resolution*

11

Time-bandwidth product $\Delta E^* \Delta t$

Towards design performance

Longer gratings to increase **transmission** and **resolution**:

280 mm 150 l/mm grating is feasible

- production is straightforward
- hRIXS spectrometer: expected resolving power >20000

Aim to achieve >15000 combined resolving power for RIXS experiments

Expected in 2028

Towards design performance

Longitudinal focusing:

with longer grating effect of defocus increases

Longitudinal focusing

Longitudinal focusing is strongly affected by:

Residual grating radius

Longitudinal source position (>120 m long undulators; operation with / without afterburner)

Bendable premirror option is in design

Expected in 2027-2028

Conclusions

Monochromatic operation:

- At present, two 120 mm gratings are installed:
 - Iow-resolution 50 I/mm grating allows for moderate resolving power of about 2000–5000 along with pulse stretching of a few to a few tens of femtoseconds RMS
 - high-resolution 150 I/mm grating reaches a resolving power of 10000 at the cost of larger pulse stretching
- Towards design performance:
 - 280 mm 150 l/mm grating is feasible
 - to control longitudinal focusing mechanical upgrade of pre-mirror to bendable option is in design phase

Special modes of operation **Applications – talk of L. Mercadier**

Short pulses (down to **attosecond** regime)

Two colors

Short pulses (down to **attosecond** regime):

Combination of nonlinear compression and dispersion leaking (S.Serkez, G. Geloni, et al.)
down to sub-femtosecond, up to hundreds µJ, provided for user operation few times

courtesy S. Serkez, G. Geloni

Short pulses (down to attosecond regime):

Combination of nonlinear compression and dispersion leaking (S.Serkez, G. Geloni, et al.)
down to sub-femtosecond, up to hundreds µJ, provided for user operation few times

Harmonic conversion (*E. Schneidmiller, et al.*)
demonstrated, 10 µJ, high photon energies

Short pulses (down to attosecond regime):

Combination of nonlinear compression and dispersion leaking (S.Serkez, G. Geloni, et al.)
down to sub-femtosecond, up to hundreds µJ, provided for user operation few times

Harmonic conversion (*E. Schneidmiller, et al.*)
demonstrated, 10 µJ, high photon energies

 Electron energy offset (*E. Schneidmiller, et al.*)
demonstrated, 200 µJ, high percentage of single-spike events

Short pulses (down to attosecond regime):

Combination of nonlinear compression and dispersion leaking (S.Serkez, G. Geloni, et al.)
down to sub-femtosecond, up to hundreds µJ, provided for user operation few times

Harmonic conversion (*E. Schneidmiller, et al.*)

- demonstrated, 10 µJ, high photon energies

Electron energy offset (*E. Schneidmiller, et al.*) - demonstrated, 200 µJ, high percentage of single-spike events

ASPECT

- R&D

Two colors:

split-undulator configuration

21

Two colors:

- split-undulator configuration
- Installation of optical delay line during shutdown 2025

Two colors:

- split-undulator configuration
- Installation of optical delay line during shutdown 2025

with fresh-slice technique

Ephotons [eV]

courtesy S. Serkez, G. Geloni

25

SASE3 beamline: layout, pink beam operation

European XFEL

H. Sinn et al., Technical design report: X-ray Optics and Beam Transport (2012); XFEL.EU TR-2012-006

High throughput spectrometer

Spectrometer after the sample:

- Forward geometry possible
- Throughput higher than hRIXS
- Compactness
- Resolving power 5000

High throughput spectrometer

Spectrometer after the sample:

- Forward geometry possible
- Throughput higher than hRIXS
- Compactness
 - Resolving power 5000

Design:

sign:Technical commissioningSlitlessexpected in fall 2026

- ~2m long
- Flat-field, based on VLS grating

Compatible with SCS detectors (Marana-X, Jungfrau)

Tender for the chamber in progress

Beam transport of short pulses and new spectroscopic capabilities

Thank you