SCS instrument

User information 13th Call for Proposals

Andreas Scherz Spectroscopy and Coherent Scattering (SCS instrument)

27. March 2024 (updated)

contact us: scs@xfel.eu

European

Report (2022) SCS Instrument Review Report

R. Carley, B. Van Kuiken, L. Le Guyader, G. Mercurio, A. Scherz doi:10.22003/XFEL.EU-TR-2022-003

European XFEL

Spectroscopy and Coherent Scattering (SCS) Instrument

SCS experiment stations

FFT experiment station Since Oct 2018

CHEM experiment station Since Feb 2022

XRD experiment station Since Sep 2022

EuXFEL APPLE-X (UE90) Variable Polarization at SA3: Linear horizontal, linear vertical, left and right circular Polarizations

APPLE-X tested so far in the energy range of 700 – 900 eV. Inquire for details

SCS instrumentation for forward scattering geometries

4

Current status of beamline and implemented capabilities of the SCS instrument

Interleaved mode with SA1

Train picker

Sag - Sag_F [µm] **KB** Focus Characterization Sag - Sag_F [µm] 0.2 0.4 0.0 -0.2 -0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 0.4 14 data Detector 3.9 data b 12 - (x_0, y_0) 3.6 $FWHM_{min} = 1.2 \ \mu m$ **FWHM**_{min} = 2.4 μm 10 . FWHM [µm] q = 0EWHM 3.3 Sample averaged: 120 averaged: 120 8 pulses in train pulses in train Zdet 6 $p(\xi,\eta)$ 2.7 φ (ξ,η) 2.4 -20 -15 -10 10 15 20 -15 -10 -5 0 5 -5 5 10 15 M. Schneider et al., Nat. Commun. 9, 214 (2018) q - q_F [mm] Train-to-train spatial jitter а n 350 horizontal jitter FWHM = 3.5 µm binned data vertical jitter FWHM = 0.4 µm 20 binned data 20 -600 8 300 vertical axis [µm] /ertical axis [µm] 15 15 250 10 10 400 200 Count Count 2 5 150 200 0 0 100 10 15 20 20 0 5 10 15 0 5 horizontal axis [µm] horizontal axis [µm] 50 G. Mercurio et al., Proc. of SPIE Vol. 11109 (2019). G. Mercurio et al., Optics Express, 30(12), 20980 (2022) -0.2 0.0 0.2 -3 -2 -1 0 2 -0.4 0.4 -5 -4 position - mean position [µm] position - mean position [µm]

European XFEL

Beam-splitting off-axis zone plate for shot-noise limited MHz transient absorption spectroscopy with the DSSC detector

FFT Experimental apparatus for XAS and SAXS / CDI

FFT Experimental apparatus for XAS and SAXS / CDI

DSSC Detector for CDI, SAXS, XPCS

DSSC detector	SAXS, CDI, BOZ-XAS, XPCS	
Number of pixels	1024 x 1024	
Pixel coordinates	Hexagonal	Detector quadrants in windmill configuration
Pixel size	204 µm x 236 µm	
Max frame rate	4.5 MHz	
Beam hole size	Default: 4.75 mm (windmill)	The diameter of the central dead area is 8mm.
Standard detector-to- sample distance	Min: 1.02 m Max: 5.40 m Travel range: 1.5 m (under vacuum)	

Porro et al., IEEE Transactions on Nuclear Science, 68(6), 1334–1350 (2021) Costa et al., IEEE Access, 11, 84323–84335 (2023)

Turenne et al., Science Advances 8(13), 1–11 (2022)

Andreas Scherz, 27. Mar 2024, User information (13th Call for Proposals)

Büttner, et al., Nature materials **20**, 30 (2021) Turenne et al., Science Advances, **8**, 1–11 (2022) Hagström, et al., J. Synchrotron Rad. **29**, 1454 (2022) Hagström,, et al. Phys Rev B, **106**, 224424 (2022). Suturin et al., Phys Rev B, **108**, 174444 (2023) Spectroscopy and Coherent Scattering (SCS) Instrument

Pi-MTE3 commercial detector option

PI-MTE3 Detector Number Pixels / Size 2048 x 2048, 15µm x15µm Cartesian coordinates, 30.7 x 30.7 mm imaging area up to 1Hz 4 port readout, inquire for Frame rate details detector-sample distance 55 - 820 mm 10² X-ray Hologram 10¹ 100 photon counts 10-1 t 10^{−2} XMCD contrast UP 2858, Büttner et al. · 10⁻³

European XFEL

Schlappa et al., arXiv:2403.08461 (2024)

CHEM experiment station with liquid-jet sample environment

Cylindrical Jet for RIXS+PFY XAS

Flat Jet for transmission XAS

Korelek et al. Nat Commun. (2018) 9. 1353

Region of Interest Center: (827, 364.5) Size: (6, 7)

	Cylindrical Nozzle (RIXS)	Flat Jet (BOEZ)
Jet Dimension	20 – 50 µm diameter	1 – 4 µm thick
Solvents*	Water, Ethanol, Octane	Water
Flow Rate	~1 ml/min	~3 ml/min
X-ray Spot Size	Tunable 200 μm – < 10μm	line focus (200 x 10 µm H x V)

*Contact SCS staff to discuss additional solvents and sample details (recirculation, cooling, etc)

hRIXS parameters for run 13

Schlappa et al., arXiv:2403.08461 (2024) Gerasimova et al., Journal of Synchrotron Radiation, 29(5), 1299–1308 (2022)

European XFEL

Andreas Scherz, 27. Mar 2024, User information (13th Call for Proposals)

hRIXS parameters	
Photon energy	0.5 – 1.5 keV
Combined resolving power	Up to 10.000 (mono HR) 3.000 (mono LR)
Transmission	~10 ⁻ ⁶
Time resolution	Limited by mono: 80-150 fs (mono HR) 30-50 fs (mono LR)
Scattering angle -> CHEM	90 deg, 125 deg

O K-edge RIXS of Liquid Water

Monochromator settings SCS beamline:

The use of monochromator leads to pulse stretching. Energy resolution to be compromised for time resolution and vice versa.

Low-resolution grating

LR grating	
Line density	50 l/mm
Resolving power	3.000 (1 st order)
Pulse stretching	30-50 fs
X-ray pulse energy	up to 30 µJ

- \rightarrow Moderate combined energy resolution
- \rightarrow High temporal resolution

HR grating	
Line density	150 l/mm
Resolving power	Up to 10.000 (1 st order)
Pulse stretching	80-150 fs
X-ray pulse energy	up to 5 µJ

- \rightarrow High combined energy resolution
- \rightarrow Moderate temporal resolution

Gerasimova et al., Journal of Synchrotron Radiation, 29(5), 1299–1308 (2022)

Measurement Count Rates

Cu L-edge

Incident Beam 1.3 x 1013 ph/s

530

49

OK

10 400

17

RIXS of Solution Samples

User-assisted commissioning (2022)

Ultrafast Transient Soft X-ray Absorption Spectroscopy in Solution at MHz Repetition Rate for Dilute Systems and Biomolecules

European XFEL

time-resolved changes are in the range of **100** μ OD => Enabling studies of biologically and catalytically relevant molecules in solution that are inherently dilute

Spectroscopy and Coherent Scattering (SCS) Instrument

Andreas Scherz, 27. Mar 2024, User information (13th Call for Proposals)

19

Energy µJ

Laser in-coupling geometry for FFT and CHEM

Optical laser system	SASE3 PP laser	
Center wavelength	800 nm	
Pulse duration	15 or 50 fs	
Repetition rate and Pulse energy	2 mJ @ 113 kHz, 800 nmOther working points exist.0.2 mJ @ 1.13 MHz, 800 nmInquire for details	
Wavelength tunability	Conversions from 800 nm / 50 fs: SHG (400 nm) , THG (266 nm), OPA: wavelength between 350 nm and 2.5 microns Please inquire for details on pulse energies	
Spot size	~100 µm	
Polarization	Linear and circular	
Operation	Burst mode synchronized to FEL with jitter <50 fs	
100	200	

Wavelength (µm)