hRIXS@SCS Instrument of European XFEL Webinar for hRIXS user community

October 21, 2021

Agenda:

- Status of hRIXS instrumentation (J. Schlappa)
- Report about hRIXS commissioning (B. v. Kuiken)
- Parameters for upcoming call (J. Schlappa, Z. Yin, S. Parchenko)
- Q-A Session

Please Type your Questions in the Q&A Chat at Any Time

Status of hRIXS instrumentation

Justine Schlappa SCS instrument, European XFEL hRIXS user community Webinar

SCS Instrument & SASE3, European XFEL

European XFEL

SCS group, European XFEL, October 21, 2021

Spectroscopy and Coherent Scattering (SCS):

- Soft x-ray beamline
- Time-resolved/ non-linear x-ray spectroscopies
- Time-resolved/ non-linear x-ray diffraction
- Forward- / small-angle scattering geometries
- Reflection- / backscattering geometries
- RIXS
- Solid samples
- Liquid-jet samples

Heisenberg RIXS (hRIXS) user consortium spectrometer

Aim:

Momentum-resolved & time-resolved resonant inelastic x-ray scattering (RIXS) at the transfer limit

hRIXS user community Webinar

SCS group, European XFEL, October 21, 2021

Scientific Motivation for Time-Resolved RIXS

Sample environment for Time-Resolved RIXS at SCS

CHEM-setup

Liquid-jets samples / chemical solid samples (setup by hRIXS UC)

XRD-setup

Solid samples: UHV and cryogenic conditions (baseline SCS setup)

hRIXS user community Webinar

SCS group, European XFEL, October 21, 2021

New mono grating installed in January 2021
 hRIXS spectrometer OSAT in February 2021
 X-ray commissioning of static RIXS in May 2021

Next steps:

- Commissioning of liquid-jet environment (October/November 2021)
- Commissioning of time-resolved RIXS (February/March 2022)
- Commissioning XRD setup (starting in April 2022)

User operation:

Upcoming proposal call

Upcoming proposal call (run 8):

\rightarrow announcement will be send out next week

In order to receive notification subscribe to SCS newsletter at our website:

https://www.xfel.eu/facility/instruments/scs/index_eng.html

Keep up with us! Receive the lastest news about the SCS instrument, directly into your inbox!

Your e-mail

SUBSCRIBE

I have taken note of the data privacy policy. I agree that my data will be collected and stored electronically for processing my request.
 Note: You can revoke your consent at any time by sending an e-mail to pr@xfel.eu.

Report about hRIXS Commissioning

Ben van Kuiken SCS instrument, European XFEL

Commissioning Spring 2021: Overview

Stage 1: Beamline Optimization

Characterization of a new 150 l/mm high-resolution grating for beamline monochromator

Characterization of new interaction point at SCS instrument

- hRIXS Spectrometer Commissioning
 - Instrument commissioned at Cu L-edge, Ni L-edge and O K-edge with 3000 l/mm grating
 - The Chem endstation was used together with a solid sample holder
 - Initial alignment by optical lasers and using multi-layers with strong specular signal
 - All measurements were performed at 1.1 MHz with 400 pulses/train
 - Princeton CCD detector was used in integrating mode (1 10 min acquisition)
 European XFEL

Beamline transmission

0,001

1E-4

Soft-X-ray Monochromator upgrade with higher-resolution grating: *Resolution optimization of HRGR by aligning angle of LE premirror*

at Ne absorption lines 1s-3p (867.1 eV), 1s-4p

New 150 I/mm grating (HRGR)

- funded by hRIXS project
- 1yr from order, integration during winter shutdown and commissioning in 2021-I by SCS, XRO, and vacuum group
- Resolving power >7000 (Ne lines)
- resolving power > 10.000 confirmed at 530eV and 930eV using the hRIXS spectrometer (combined res.)

Transmission of SASE3 beamline in 1st and 2nd diffraction orders for LRGR (solid lines and circles), HRGR (dash lines and open circles)

0

Photon Energy (eV)

1000

500

Beamline transmission through 100 μm exit slit

20 mrad offset mirrors

LE pre-mirror,

1st orde

n

2nd order

1500

hRIXS Data Collection and Working Points

European XFEL

* not enough time to optimize

Edge	Energy (eV)	$\Delta \mathbf{E}$ (meV)	Ε/ΔΕ
Cu L ₃	930	106	8 700
Ni L ₃	853	122*	6 900*
ОК	530	49	10 400

Cu L-edge RIXS: CuO

Elastic line at 931.5 eV Measured on NiO FWHM = 106 meV $E/\Delta E = \sim 8700$

Ni L-edge RIXS: NiO

O K-edge RIXS

Elastic line at 511 eV Measured on NiO FWHM = 49 meV $E/\Delta E = \sim 10500$

400

200

0+-10

-8

-6

-4

Energy Loss (eV)

-2

Sum of 15 10 min spectra E0 = 531.6 eV

Measurement Count Rates

Cu L-edge

Incident Beam 1.3 x 1013 ph/s

Measurement Count Rates

Cu L-edge

CuO spectrum measured with 100% GATT transmission (~2 mW), 400 pulses/train, and a 1 min acquisition, 80% wt. Cu

La₂CuO₄ thin film spectrum measured with 10% GATT transmission (~0.2 mW), 400 pulses/train, and a 10 min acquisition, 16% wt. Cu

17

18

Measurement Count Rates

Cu L-edge

Incident Beam 1.3 x 10¹³ ph/s

19

Measurement Count Rates

Cu L-edge

Incident Beam 1.3 x 10¹³ ph/s

O K-edge

Incident Beam 1.6 x 10¹² ph/s

Expected Parameters

1000 l/mm grating will offer higher efficiency

Expected Count Rates for Liquid samples

- O K-edge measurements of liquid water (55 M) compare similarly to metal oxide O K-edge spectra (79 and 90 M for CuO and NiO, respectively)
- A 100 mM solution of a transition metal complex (dilution factor of ~1000) with La_2CuO_4

Expected Parameters

1000 ln/mm grating will offer higher efficiency

- O K-edge measurements of liquid water (55 M) compare similarly to metal oxide O K-edge spectra (79 and 90 M for CuO and NiO, respectively)
- A 100 mM solution of a transition metal complex (dilution factor of ~1000) with La₂CuO₄

UAC Q1 2022: Enabling Optical Pump – RIXS Probe at SCS for Solids and Liquids

Pump-probe on Solid-state samples with Chem Chamber

KW6 will be used to commission laser in-coupling and diagnostics

KW8 will be dedicated to pump-probe measurements on solid samples at Cu and Ni L-edges

Pump-probe measurements on Solution Samples

- KW11 will commission the cylindrical liquid jet system at O K-edge
- KW13 will be dedicated to pump-probe at Fe L-edge

22

23

Acknowledgement

European XFEL:

Justine Schlappa, Ben van Kuiken, Natalia Gerasimova, Piter Miedema, Martin Teichmann, Jan Torben Delitz, Carsten Broers, Luigi Adriano, Giuseppe Mercurio, Nahid Ghodrati, Le Phuong Hoang, Zhong Yin, Sergii Parchenko, Robert Carley, Manuel Izquierdo, Alexander Reich, Andreas Scherz @ SCS Marijan Stupar, Bernard Baranasic, Hector Vega Perez, Joern Reifschlaeger @ EEE

HZB / Uni Potsdam:

Stefan Neppl, Fred Senf, Christian Weniger, Annette Pietzsch, Robby Buechner, Sebastian Eckert, Chung-Yu Liu, Vinicius Vaz da Cruz, Frank Siewert, Christian Sohrt, Alexander Foehlisch

Politecnico di Milano:

Yingying Peng, Giacomo Ghiringhelli

DESY:

Tim Laarmann, Torben Reuss, Sreeju Sreekantan Nair Lalithambika, Simone Techert

University of Helsinki:

Simo Huotari

BNL: Mark Dean, Xi He, Ivan Bozovic

ERSF: Nick Brookes

European XFEL

Parameters for upcoming call

Justine Schlappa, Zhong Yin, Sergii Parchenko SCS instrument, European XFEL

25

SASE3 parameters for run 8th

	Pulse tr	ains @	10Hz	
	\nearrow	\sim		t
P				Max 2250 pulses @ 4.5MHz
•		500µs		t
	SASI	SASI	SASE	
	N		ω	

XFEL beam parameters	
Photon energy	0.5 keV – 3.0 keV
Bandwidth SASE3	0.5 – 1.0 %
X-ray pulse energy SASE3	5 mJ (< 1.5 keV) 2 mJ (> 1.5 keV)
X-ray pulse duration SASE3	10 – 25 fs
Train repetition rate	10 Hz (or train picker)
Repetition rate in pulse train	Up to 4.5 MHz 1.1 MHz for the use of liquid jet
Number of x-ray pulses per train	400 Assuming equal distribution per instrument at 2.25 MHz FEL operation
X-ray polarization	Linear horizontal Might become available: linear vertical and circular

Using alternate mode between SASE1 and SASE3 we can get up to 400 pulses at 1.1 MHz rate.

Monochromator settings SCS beamline:

The use of monochromator leads to pulse stretching. Resolution has to be compromised for time resolution.

Low-resolution grating

LR grating	
Line density	50 l/mm
Resolving power	3.000 (1 st order)
Pulse stretching	30-50 fs
X-ray pulse energy	up to 30 µJ

- → Moderate combined energy resolution
- \rightarrow High temporal resolution

HR grating	
Line density	150 l/mm
Resolving power	Up to 10.000 (1 st order)
Pulse stretching	80-150 fs
X-ray pulse energy	up to 5 µJ

- \rightarrow High combined energy resolution
- \rightarrow Moderate temporal resolution

hRIXS parameters for run 8th

hRIXS parameters	
Photon energy	0.5 – 1.5 keV
Combined resolving power	Up to 10.000 (mono HR) 3.000 (mono LR)
Transmission	~10 ⁻⁶
Time resolution	Limited by mono: 80-150 fs (mono HR) 30-50 fs (mono LR)
Scattering angle	Fixed, angles depend on experimental station

Continuous motion will be commissioned in beginning of 2022-II and will not be offered yet

hRIXS user community Webinar

SCS group, European XFEL, October 21, 2021

XRD setup (baseline SCS) in run 8th

- Time-resolved spectroscopy from solid samples:
- UHV ($p < 10^{-9}$ mbar)
- Maximum sample size: ~ 1 cm²
- Triple-rotating flange to change scattering angle of hRIXS:
- $65 \text{ deg } \le 2\Theta \le 145 \text{ deg}$
 - Cryogenic temperatures

- Technical/offline commissioning starting in April 2022
- No continuous motion of hRIXS during user experiment in run 8th, fixed angle

SCS group, European XFEL, October 21, 2021

XRD inner mechanics

hRIXS user community Webinar

Chemistry Chamber (by the hRIXS UC)

Objectives:

dedicated experimental chamber for hRXIS studies of chemical systems in the liquid phase

Cylindrical liquid Jet

Three differential pumping stages (DPS)

Highly flexible and motorized sample and chamber aligment

Multi purpose sample holder

Multitude of diagnostic tools for, i.e. X-ray spot size, spatial and time overlap

XAS in TFY

CHEM Chamber liquid jet system

- Optimized Chem chamber for high resolution time resolved RIXS studies of chemical samples in the liquid phase:
 - **μ** jet with diameter ranging from 15 μm till 50 μm
 - running jet for bio-chemical relevant solvents, i.e. liquid water, ethanol, iso-propanol
 - a high spatial resolution microscope
 - Switching channel device for up to 6 samples
 - Renewable sample, up to MHz repetition rate

Optical laser parameters

- * Central wavelength: 800 nm, 2 mJ/pulse @ 113 kHz
- * Wavelength conversion: SGH 0.56 mJ/pulse, THG 0.14 mJ/pulse
 Conversion with OPA: 380 nm 2500 nm.
 Contact sergii.parchenko@xfel.eu, robert.carley@xfel.eu for details
- * Polarization: linear, circular
- * Repetition rate: 113 kHz (default), 1.1 MHz 113 kHz (0.2 2 mJ/pulse)

Laser in-coupling geometry.

CHEM chamber, top view

hRIXS user community Webinar

SCS group, European XFEL, October 21, 2021

Website:

https://www.xfel.eu/facility/instruments/scs/index_eng.html

8th-Call-for-Proposals: RIXS@SCS

DOWNLOAD

Subscribe to SCS newsletter in order to be informed about proposal calls:

Keep up with us! Receive the lastest news about the SCS instrument, directly into your inbox!

SCS instrument,	Your e-mail	SUBSCRIBE
	I have taken note of the data privacy policy. I will be collected and stored electronically for pro Note: You can revoke your consent at any time to pr@xfel.eu.	agree that my data cessing my request. by sending an e-mail

PostDoc position at hRIXS, SCS:

https://www.xfel.eu/careers/open_positions/index_eng.html

Post Doc / Instrument Scientist (f/m/d)

The position

- research in ultrafast spectroscopy, particularly time-resolved RIXS, in collaboration with the SCS group and the Heisenberg-RIXS user consortium
- active role in user-assisted commissioning, in-house proposals and development of hRIXS
- user support at the hRIXS spectrometer, CHEM and XRD setup, including shift-work periods (partially nights and during weekends)

Reference number

Deadline: 02 November 2021

S-400

Q & A Session

Please Type your Questions in the Q&A Chat

Important Contacts:	
Chem Chamber Experiments:	Zhong Yin (zhong.yin@xfel.eu)
	Ben Van Kuiken (<u>benjamin.van.kuiken@xfel.eu</u>)
XRD Chamber Experiments:	Sergii Parchenko (sergii.parchenko@xfel.eu)
	Justine Schlappa (justine.schlappa@xfel.eu)
SCS group (scs@xfel.eu)	
XFEL User Office (useroffice@)xfel.eu)