Nano-size Quantum Systems Endstation European Yevheniy Ovcharenko Scientific Instrument SQS Instrument Engineer / Scientist SQS Early User Workshop Schenefeld, February 12th, 2018 Clusters Nano-particles SASE 3: 250 - 3000 eV 2 - 100fs **European XFEL Bio-molecules**

NQS Endstation

Background vacuum: 10⁻⁹ ÷ 10⁻¹⁰ mbar

Experiments

- Electron spectroscopy
- Ion spectroscopy
- Single shot scattering imaging

Baseline equipment:

 Rare gas aggregation cluster source (in coll. with T. Möller et al., TU-Berlin)

Options:

- Pulsed microplasma metal cluster source (PMCS)
 (in coll. with P. Piseri, Uni. Milano)
- Controlled molecular beam (COMO) set-up (in coll. with J. Küpper et al., CFEL)
- Nano-particle source

(coll. between J. Hajdu et al., Uni. Uppsala &

J. Schulz et al., *European XFEL*)

Nano-size Quantum Systems set-up

Simulations

3%

Electron Spectroscopy

VMI spectrometer – base-line equipment

- Conical shape electrodes
- Operate with the scattering detector: max. view angle is 60°
- Electron kinetic energy range up to 850 eV
- > Energy resolution $\Delta E/E$ is 3.0 %

- 10 Hz solution: 1Mpix sCMOS camera
- ➢ High. Rep. option: Hyper Vision HPV-X2 (Shimadzu Corp.) with 10Mfps

100

200

300

400

500

Electron kinetic energy (eV)

600

700

read-out speed in Burst mode - under review

European XFEL

Electron Spectroscopy

Options:

High resolution eTOF spectrometer (AQS - A.De Fanis)

- Electron kinetic energy range 0 3000 eV
- > 0.1% of 4π sr acceptance
- ► $E/\Delta E \sim 10^4$ at 800 eV

High resolution VMI spectrometer (AQS – S.Deinert, T.Mazza, I.Schevchuk)

- Electron kinetic energy range up to 1.2 keV
- > Energy resolution $\Delta E/E$ is 1%

Ion Spectroscopy

- TOF spectrometer
 - Standard Wiley-McLaren design
 - Operate with the scattering detector & VMI spectrometer
 - > Mass resolution m/ Δ m:
 - ➢ 450 for thermal ions in VM&iTOF mode
 - ➤ 1000 for thermal ions in iTOF mode

VMI spectrometer

- > Acceptance: 4π
- > Energy resolution $\Delta E/E$ is 3.0 %
- > Mass resolution m/ Δ m:
 - ≥ 200 for thermal ions
 - ➢ 30 for 400 eV ion kinetic energy

Single Shot Scattering Imaging

Parameter	Value
Energy range	0.5 – 2 keV
Detection efficiency	5 – 15 %
Detector size	75 mm in diameter
Number of pixels	~ 1000 x 1000
Spatial resolution	75 x 75 μm²
Dynamic range	< 1000 @ 1 keV
Resolution	Single photon down to 0.25 keV
Read out noise	1e⁻ rms (sCMOS camera)
Frame rate	10 Hz
Hole in the center	3 mm in diameter
Vacuum conditions	<10 ⁻⁹ mbar (UHV comp.)

European XFEL

MCP stack with hole in the center Day-one solution !

Inter. zone to detector distance = 65mm

&

SQS team

T. Möller et al.

C. Bostedt et al., J. Phys. B: At. Mol. Opt. Phys. 43, 194011 (2010)

D. Rupp, Ph.D. thesis, TU Berlin, 2013

Y. Ovcharenko, SQS Early User Workshop, February 12th, 2018

Imaging Detector: pnCCD Detector

Parameter	Value	
Energy range	0.03 – 25 keV	
Detection efficiency	> 80% @ 0.7 – 12 keV	
Detector size	78 x 78 mm ²	
Number of pixels	1024 x 1024	
Sensor pixel shape	Rectangular	
Sensor pixel size	$\sim 75 \ x \ 75 \ \mu m^2$	
Dynamic range	Up to 10.000 @ 1 keV	
Resolution	Single photon from 50 eV to 25 keV	
Read out noise	3 e ⁻ rms (high gain)	
Frame rate	Up to 150 Hz	
Minimum center gap	2 mm	
Vacuum conditions	Goal < 10 ⁻⁸ mbar (UHV comp.)	

European XFEL

"Low Speed" Imagers for 10 Hz Applications Beginning 2019

L. Strüder et al., Nucl. Instr. Meth. Phys. Res. A 614, 483 (2010)

imaging & spectroscopy

Rupp, D., New Journal of Physics, vol. 14, Issue 5, pp. 055016 (2012)

B. Rudek, et al. *Nat. Photonics* **6** (2012) 858

Robert Hartmann

Lothar Strüder

Information from Markus Kuster (Detector Development, EXFEL)

Y. Ovcharenko, SQS Early User Workshop, February 12th, 2018

pnCCD Detector Integrated to NQS Set-up

- Linear translation along the FEL beam 300mm
- Up/down movement of 20mm / pnCCD module
- Lateral translation +/- 5mm

Inter. zone to detector distance = 50 ÷ 350 mm

UHV compatible design !

Single Shot Scattering Imaging Future Upgrade !

DSSC Camera: middle of 2020

Istituto Nazionale di Fisica Nucleare

Target Delivery System – Rare Gas Cluster Source & Doping Option

Target Delivery System – Controlled Molecular Beam (COMO) Set-up State-, size-, and isomer-selected samples of polar molecules and clusters

Target Delivery System – Pulsed Microplasma Cluster Source (PMCS)

Target Delivery System – Aerosol Sample Delivery

- Sample in gas phase through droplet atomization
- Naked particles focused by an aerodynamical lens
- Ion time-of-flight detector veto
- > 4.5 MHz at final operation mode

Has been already used at SPB !

	GDVN	Electrospray
Flowrate	~1 µl/min	~60 nl/min
Droplet diameter	~1 µm	~150 nm
Optimal Sample Conc. (Particles/ml)	~1·10 ¹²	~4·10 ¹⁴

Johan Bielecki, Uppsala In-kind-contribution

Day 1 Experimental Conditions

FEL beam performances

Parameter	Unit	Value
Photon energy	eV	1000 (&few more)
Pulse duration	fs	50 – 100 (FWHM)
Pulse energy	mJ	Up to 3
Number of pulses		300 / pulse train
Repetition rate	MHz	1
Polarization		Linear (horizontal)
Focus size	μm	1.5 – 2.5
Power density	W/cm ²	> 10 ¹⁷

Electron spectroscopy:

- > VMI spectrometer
- > eTOF spectrometer

lon spectroscopy:

- iTOF spectrometer
- VMI spectrometer

Single shot scattering imaging

- ➤ MCP stack with a hole
- ➢ pnCCD detector

Target delivery options:

- Rare gas cluster source
- Metal cluster source
- ➤ COMO set-up
- Aerosol source

Europe

Acknowledgments

SQS team

A. Achner

T. M. Baumann

R. Boll

S.Deinert

A. De Fanis

P.Grychtol

M. Ilchen

T. Mazza

M. Meyer

J.Montaño

Y.Ovcharenko

N.Rennhack

R. Wagner

P.Ziołkowski

Anatoli Ulmer Daniela Rupp Thomas Möller

Detector Development Monica Turcato Markus Kuster Sample Environment

> Johan Bielecki Joachim Schulz

Jochen Kupper

PNSens•r

Robert Hartmann Lothar Strüder

Thank you for your attention!

Supplemental materials

Detector options

Electron Spectroscopy

- double VMI spectrometer
- high kinetic energy range VMI spectrometer (AQS)
- magnetic bottle (R. Feifel et al., U Göteborg)
- SCIENTA analyser (K.H. Meiwes-Broer et al., U Rostock)

Ion Spectroscopy

- Magnetic deflection TOF (B-TOF) spectrometer
 - mass resolution:
 - possible to distinguish ions with energies between 1 eV and 1 MeV and charge states between 1⁺ and 30⁺
 - the spectrometer is very flexible (changing the magnetic field)
 - compatible with TOF and VMI spectrometers
- Thomson parabola (E. Rühl et al., FU-Berlin)

NQS support & chamber alignment

NewPort high load XYZ support

Axis	Traveling range	Resolution	Reproducibility
Х	\pm 50 mm	1 µm	5 µm
Y	\pm 50 mm	1 µm	5 µm
Z	+ 92 mm – 58 mm	1 µm	5 μm
R _x	± 1°	1 m°	5 m°
Ry	± 1°	1 m°	5 m°
R _z	± 1°	1 m°	5 m°

Maximum payload 1500 kg

Max foot print: 2100 x 1500 x 350 mm approx.

- Air pads
- NewPort support
- Alignment laser
- Paddle (YAG screen)

Imaging detector: MCP base detector

Slow sCMOS & fast CMOS cameras

1 Mpixel Module

DSSC – DEPFET Sensor

Parameter	Value
Energy range (optimized for)	0.5 – 6 keV
Detection efficiency	100 %
Detector size	210 x 210 mm ²
Number of pixels	1024 x 1024
Sensor pixel shape	Hexagonal
Sensor pixel size	$\sim 204 \; x \; 236 \; \mu m^2$
Dynamic range	~ 5000 @ 0.5 keV > 10000 @ 1 keV
Resolution	Single photon down to 0.25 keV
Frame rate	0.9 – 4.5 MHz
Stored frames/train	800
Vacuum conditions	~ 10 ⁻⁶ mbar

M. Porro et al, IEEE Trans. Nucl. Sci., Rev. Sci. Instrum., 59 (6), 3339 (2012)

European XFEL

Information from Monica Turcato (WP-75)

1-Mega-Pixel pnCCD Camera - Layout

• Image area 59 cm²

PNSenser

- Format: 1024 × 1024
- 16 analog Output-Channels (8 per module)
- Frame Rate up to 150Hz

Nano-size Quantum Systems set-up

1-Mega-Pixel pnCCD Camera - Layout

Optical light attenuation, measured

Lothar Strüder

24

Scattering Detector Options

Parameter	DSSC	Fast CCD	pnCCD	MCP stack
Detector size, mm ²	210 x 210 4 quadrants 4 ladders in quadrant	57.6 x 28.8	78 x 78	Ø75
Pixel size, µm ²	204 x 236	30 x 30	75 x 75	Spatial resolution is expected to be 75 x 75
Number of pixels	1024 x 1024 4 quadrants 4 ladders in quadrant	1920 x 960	1024 x 1024	≈ 750 x 750
Detection efficiency	100% for 0.5 – 6 keV	>50% for 250 – 600 eV >94% for 1 – 6 keV	>80% for 0.3 – 12 keV	15 – 5 % for 0.5 – 1.5keV
Single photon resolution	0.5 keV at 2.5 MHz 1 keV at 4.5 MHz	> 1 keV	yes, in whole energy range	-
Dynamic range photons/pixel/pulse	6000 (up to 12000) at 1 keV	1000 at 0.5 keV	5x10 ⁴ at 0.2 keV 5x10 ³ at 2 keV	expected to be 1000
Read out noise, rms	?	30e-	Low gain – 25 e [.] High gain – 3 e [.]	1 e⁻ (Andor camera)
Read out frequency	800 frames/ bunch train 10Hz	60 Hz	Up to 150 Hz	Up to 100 Hz
Min. center gap	2 x 2.5 mm ²	hole - 1.8 mm active area - 2.4 mm	< 2 mm	hole - 3.0 mm active area - 6.0 mm
View angle	0.2° - 35° at 300 mm 0.06° - 12° at 1000 mm	1.0° - 24° x 1.0° - 12° at 65 mm	3° - 67° at 20mm (min.) 0.9° - 36° at 65mm 0.6° - 25° at 100mm 0.2° - 9° at 300mm	2.5° - 30° at 65 mm
Angle resolution	0.052° at 300 mm 0.016° at 1000 mm	0.026° at 65 mm	0.21° at 20mm (min.) 0.066° at 65 mm 0.043° at 100 mm 0.014° at 300 mm	0.044° at 65 mm
Vacuum, mbar	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁷ - 10 ⁻⁸	10 ⁻⁹ - 10 ⁻¹⁰	10 ⁻¹⁰ - 10 ⁻¹¹
Bakeable	No	No	Yes	Yes
Availability	-	first day	-	first day

Quadrupole mass spectrometer

Why we need it?

- Source characterization:
 Estimation of the cluster size;
 Doping level characterization;
 Time arriving measurements;
 Bio-molecules and nanoparticles ?
- Triple filter mass spectrometer;
- for the molecular beam studies / characterization;
- 50, 300, 500, 1000, 2500 and 5000 amu options;
- 7 decade dynamic range;
- 650 measurements/s;
- Detection down to 2x10^-14 mbar;
- HAL 1001-9 RC (9mm) -> high mass / high resolution;
- Ethernet interface;

Hiden Analitical Quadrupole mass spectrometer

Nano-size Quantum Systems set-up