HED science: Experiments using X-ray Heating

Thomas Preston

HED instrument at the European XFEL and HiBEF user consortium of the HED instrument

XFEL User Meeting, Schenefeld, Germany
22nd January 2018
The scientific agenda

Laser Compression
- Shock & ramp compression
- Long-pulse ns lasers

Relativistic Laser-Plasmas
- Electron transport,
- Instabilities and filamentation,
- Particle acceleration,
- High EM fields

Advanced methods
- Spectrometers
- Advanced focusing
 - IXS, SAXS
- Phase contrast imaging

Isobaric X-ray excitation
- Transport properties,
- Hollow atoms, rates

Further projects
- Isobaric heating
 - X-ray backlighters
 - X-ray detectors & EMP
 - High-purity polarimetry
 - …

Diamond Anvil Cells
- Fast dynamic piezo DAC
- Pulsed laser heated DAC
- Double-stage DAC

Soft and hard XFELs

Hard XFELs

Isocoric X-ray excitation
- XRD, IXS, XES

Multi-100 TW fs lasers

XRD, IXS, XES

NIF

Multi-100 TW fs lasers

Phase contrast imaging

Advanced focusing
- IXS, SAXS

Advanced methods
- Spectrometers

Isocoric X-ray excitation
- Transport properties,
- Hollow atoms, rates

Further projects
- Isobaric heating
 - X-ray backlighters
 - X-ray detectors & EMP
 - High-purity polarimetry
 - …
Isochoric heating relies on rapid energy deposition by ultrafast X-rays

- Energy deposition on timescale of 100fs, faster than hydrodynamic expansion (> 1ps).
- Electron temperatures much higher than ion temperatures.
- Ion density remains constant.
- Can determine electron density from temperature and ionization stage.
- For low-Z elements (Al, Mg, etc.) can heat to over 100eV accessing HDM.
- Create degenerate, highly-coupled plasmas.

Absorption by focusing X-rays and probing around atomic edges and resonances

With small focal spots, ~1um, can absorb many photons per atom.

Higher absorption above edges.

Rapid heating is achieved by thermalisation of fast Auger electrons.

Ambient Mg is photoionized from the K-shell. K-shell hole is then filled by Auger decay. Two electrons are added to the conduction band.
Diagnosis is achieved by using x-ray emission spectroscopy

Tuning x-ray photon energy through K-edges of successive ionization stages gives higher emission lines.

Disclaimer: other diagnostics are also available…

Young et al., Nature 466, 56-61 (2010)
There are some caveats/considerations when measuring isochorically heated solid density plasmas

- Tightly focused beam has large transverse gradients across focus.
- These must be measured and incorporated into any modelling.
- Longitudinal gradients through target should be considered.

Rackstraw et al., HEDP 11, 59-69 (2014)
X-ray heated plasmas provide an important test-bed for many fundamental measurements in plasma physics

- Continuum lowering (IPD)

- Saturable absorption

- Opacity

X-ray heated plasmas provide an important test-bed for many fundamental measurements of electronic properties

Collisional Rates

Dielectric function

IPD can be measured by knowing the incoming XFEL photon energy and measuring edge positions.

IPD affected by density and charge state. Different charge states give different electronic screening.

Isochoric heating gives fixed ion density, and known electron density from charge state.

Pump photon energy is known and therefore measures edge.
K-shell opacity can be deduced using emission from targets of known thickness

- Fit 1D slab solution to the equation of radiative transfer for a range of thicknesses as a function of emitted photon energy.
- Fit parameters are then the emissivity and opacity.
- Due to constant ion density, and simple absorption process, the electron density and temperature of the measurement are well defined.
The dielectric function can be extracted from Thomson scattering

- Plasmon is fitted.
- Deconvolving out the instrument function gives the imaginary part of the dielectric function.
- Kramers-Kronig relation yields the real part of the dielectric function, and the inverse transform is verified to conform with the original Im part.

\[S_{xx}^0(k, \omega) = -\frac{\varepsilon_0 \hbar k^2}{\pi e^2 n_e} \frac{\text{Im} \varepsilon^{-1}_1(k, \omega)}{1 - \exp\left(-\frac{\hbar \omega}{k_B T_e}\right)} \]

\[\text{Re} \varepsilon^{-1}_1(k, \omega) = 1 + 2P \int_0^\infty \frac{\omega'}{\pi} \frac{\text{Im} \varepsilon^{-1}_1(k, \omega')}{\omega'^2 - \omega^2} \]

First observations of hard X-ray lasing on atomic transitions

Cu laser demonstrated at SACLA using both ASE (amplified spontaneous emission) and seeding.

Left is shown ASE case as pump is increased.

Lines get broader – more KLL Auger electrons yields more 3d vacancies.

Line ratio is greater than that for spontaneous emission (2:1).

Yoneda et al., Nature 524, 446-449 (2015)
First observations of hard X-ray lasing on atomic transitions

Seeded case is achieved using variable gap undulators and one bunch. Pump above edge to create K-shell hole, then probe with seed on 1fs timescale.

Large shot-to-shot variation in seed spectrum.

Can pump each Kα line individually.

Lines narrower indicating enhanced lifetime for upper level in laser.

Yoneda et al., Nature 524, 446-449 (2015)
The future of isochoric heating

- Iron was isochorically heated at SACLA with 7keV X-rays and saturable absorption measured.

- Pump-probe heating of diamond with ~6keV allows measurement of femtosecond X-ray damage processes.

Inoue et al., PNAS 113, 6 1492-1497 (2016)

- Double core holes were created in Krypton with 15keV X-rays.

- With European XFEL we can push to harder photon energies (20keV fundamental) and smaller nanometre focal spots.

Yoneda et al., Nat. Comms. 5, 5080 (2014)

The future of Thomson scattering with higher repetition rates

- Example shown is shock-compressed but principle is the same for isochoric heating.

- Measuring incident spectrum upstream allows elastic signal to be subtracted yielding just the plasmon.

- Higher repetition rate at XFEL on X-ray only and isochoric heating experiments will expedite these measurements of the shape of the plasmon.

- Further inferences from plasmons can then be made, such as the dielectric function.

Exploring European XFEL’s unique pulse train

- **Dynamic DAC (high P):**
 - Full structural history (XRD) of a material from 0 to few Mbar in one burst.
 - Strain rate studies (fast, slow ramp), Phase transition hysteresis studies.
 - Single x-ray pulses are ultrashort, no blurring. 1s at synchrotron ~ 1 shot at EuXFEL.

- **Pulsed laser heated DAC (high P, T)**
 - Temperature history of irradiated spot (pyrometry) correlated with structure (XRD).
 - X-ray emission studies at each pulse (time step).
 - No averaging over time like at synchrotron.

- **Isobaric heating (high T)**
 - Stepwise heating of sample until melt.
 - Investigation of structure (XRD), temperature (pyrometry), optical properties (R, T, A).
 - Pressure is constant by free expansion in vacuum.
The future with isobaric expansion experiments

Melt curve from:
Isobar assuming linear thermal expansion with \(\alpha = 24 \times 10^{-6} \text{ K}^{-1} \)
Over a decade of XFEL isochoric heating of dense plasmas

First Spectroscopy of XUV FEL-heated solid density plasma
Zastrau et al., PRE 78 066406 (2008)

First observation of saturable absorption, “transparent aluminum”

Conduction band temperature measurements

First Spectroscopy of LCLS-heated solid density Al plasma

Measurements of ionization potential depression in Al, Mg, Si, and compounds
Ciricosta et al., Nature Comm. 7 11713 (2016)

First XUV-pump XUV-probe experiment on dense hydrogen plasma

First observations of hard X-ray lasing on atomic transitions
Yoneda et al., Nature 524, 446-449 (2015)

Measurement of unexpectedly high collisional rates
Vinko et al., Nature Communications 6 6397 (2015)

Measurements of K-shell opacities of solid Mg plasma