## **The HED Instrument at the European XFEL** Status in 2020

Karen Appel for the HED/HIBEF team Scientist HED scientific instrument at the European XFEL

HED-HiBEF satellite meeting to the EuXFEL/DESY UM 2021, 20<sup>th</sup> January 2021, European XFEL, Germany





#### **European XFEL: beamlines and instruments**



8 keV lasing in SASE1 with up to 1 mJ
 First experiments at SASE1
 First experiments at HED
 May 2019

#### SASE beam at HED at 6 keV and 17.8 keV



Zastrau et al., Journal of Synchrotron Radiation, in preparation

#### XFEL properties at the HED instrument in 2019 & 2020

cw 41, 2019: up to 780 µJ @ 17.8 keV/ cw 42, 2020: 3 mJ @ 9 keV

| Fully tunable between | $3 - 25 \text{ keV} \rightarrow 6 - 18 \text{ keV}$<br>(3 - 5 keV with limited performance) |
|-----------------------|---------------------------------------------------------------------------------------------|
| Pulse duration        | 2 – 100 fs → 25 fs at 250 nC                                                                |
| Photons per pulse     | ~10 <sup>11</sup> (25 keV), ~10 <sup>12</sup> (5 keV) → reached                             |
| Spot size on sample   | sub-μm (HIBEF), few μm,<br>20 – 30 μm, 200 – 300 μm, few mm                                 |
| Seeded beam           | 5 – 14.4 keV → 02/2020 ( <mark>9 keV</mark> )                                               |
| Repetition rate       | shot on demand, 1, 5, 10 Hz – 3000 pulses/s                                                 |



#### Mirrors at HED: offset and distribution





#### Reflectivity of 2x offset mirror + 1x distribution mirror

Offset mirrors: 1.7 (1.1) – 3.6 mrad, Pt & B₄C coating -1Bender on M2 -2 Distribution mirror: 1.3 mrad; log10 Reflectivity (a.u.) B<sub>4</sub>C (21.4 keV); Pt (60.7 keV) -3 -4 All mirrors have a useable length > 80 cm -5 Intermediate focusing optics scheme reduces cutting effects on edges -6 -7



#### Monochromator

4-bounce, Si<sub>111</sub> crystals
Beam size: 6σ
Energy range: 5 - 25 keV (24.5° - 4.5°)
Working range up to now: 6 - 9 keV
Cryogenically cooled
ΔE/E = 10<sup>-4</sup>





#### **High-resolution monochromator**

First 2 crystal of standard mono + Si<sub>533</sub> crystals in backscatter geometry

Design being finalized by FMB Oxford

Crystal was cut, prepared by X-ray optics group in Jena









### Focussing scheme at HED

4 CRL systems placed at various distances from the source
Foci ranging from ~1 mm down to *sub-micron*

(using nanofocus setup - framework HIBEF DESY,

- A. Schropp, position few 10s cm upstream of sample)
- CRL2 still not operational for safety constraints
- Energy range 5 25 keV

Chromatic (different set of lenses for different Xray energies) → change in photon energy causes significant shift in focus position

- Optimized for transmission (>95%) → actual transmission lower atm
- Use of intermediate focussing scheme improves beam stability



🛛 🗾 📒 European XFEL

**European XFEL** 

#### LiF imprint focus characterisation at 6 keV in IC1



Zastrau et al., Journal of Synchrotron Radiation, in preparation

#### Wire scan focus characterisation at 17.8 keV in IC2



# Nano-focused beam (CRL 4) - HIBEF contribution (WPL A. Schropp, DESY)



## 220 nm focus at 9 keV User experiment M. Makita

First tests in August 2019 at 9 keV, rescheduled for March 2020

Be CRL4 and phase corrector aligned for nano-focused beam









#### Beam stability – heat load effect and drifts



Beam stabilisation compensates for these drifts (it was deactivated for these measurements)
 Change in attenuation level upstream of the beam stabilisation will also cause drifts



**European XFEL Same principle for IBS, I**zero2, diodes in IC1 and IC2

#### **Beamline transmission measurements**





### IC1 – flexible large chamber





- Motorized carriages
- Arc R = 306, 517, 750mm
- Breadboard moveable in x-axis
- Mounting of X-ray detectors
- Mounting of spectrometers



#### HED vacuum compatible and compact X-ray detectors



| Parameters                    | ePix100                | ePix10k                                    | Jungfrau                                                                  | Gotthard-II                                                     |
|-------------------------------|------------------------|--------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|
|                               | SLAC                   | SLAC                                       | PSI                                                                       | PSI                                                             |
| Sensor                        | 300 µm Si              | 300 µm Si                                  | 320 μm Si<br>(upgrade 450 μm Si)                                          | 320 µm Si                                                       |
| <b>Sensor size</b><br>(pixel) | 704x768<br>(35x38 mm²) | <b>352x384</b><br>(35x38 mm <sup>2</sup> ) | 512x1024<br>(40x80 mm <sup>2</sup> )                                      | 1x1280<br>(8x64 mm²)                                            |
| Pixel size (µm)               | 50                     | 100                                        | 75                                                                        | 25                                                              |
| Dynamic range                 | 10² (@ 8 keV)          | 10 <sup>4</sup> (@ 8 keV)                  | 10 <sup>4</sup> (@ 12 keV)                                                | <b>10</b> <sup>4</sup> (@ 12 keV)                               |
| Noise (eV)                    | < 280                  | < 560                                      | < 450                                                                     | < 900                                                           |
| Repetition (Hz)               | 120                    | 120                                        | 2000 (200 tested)<br>0.5MHz in burst mode,<br>16 images on-chip<br>memory | 40,000<br>0.8MHz in burst mode,<br>128 images digital<br>memory |
| # of modules                  | 2                      | 3                                          | 4                                                                         | 2                                                               |

#### **Platforms – Interaction Chamber 1**

- 2 ePIX100 detectors for spectroscopy, imaging or XRD, 50um pixel pitch, ~700x700 pixels, 10 Hz. Very low noise
   2-3 ePIX10k (gain switching, 10<sup>4</sup> dynamic range) for XRD or spectroscopy, 100um pixel pitch, ~350\*350 pixels, 10 Hz
   2-3 JUNGFRAU detectors (gain switching 10<sup>4</sup>) at 10 Hz (no burst mode) for XRD or spectroscopy (pixel pitch 75um, detector size ~ 3.5\*7 cm)
- Possibility to mount area detectors or spectrometers on curved rails in vacuum on vertical breadboard
- Von-Hámos HAPG spectrometers (RoC 50mm and 80mm, crystals available 40um HAPG, 100um HAPG, 200um HOPG), single crystal van Hámos (Si 111 and Si 531)
- High-resolution monochromator and diced analyzers (Si 533) for ~50meV spectroscopy at 7.490 eV
- Stepper-motor target stage on hexapod and precision rotation stage
- CRL4 for sub-µm foci and PCI set-up
- SAXS set-up (see talk of Allejandro Garcia Lajo later today)

#### In-line spectrometer specifications for beam characterisation

#### HIREX-II (XPD group, XFEL)

- Energy range (5 20 keV)
- 0.2 eV/300 eV
- C(110), R=100 mm, Si(110), R=50 or 100, Si(111), R=75 mm
- Pulse to pulse information with Gotthard detector
- 2D with PhotonicsScience

| Bending<br>Radius<br>(mm)      | Bragg<br>angle   | Energy<br>(keV)     | Crystal | Crystal reflection |
|--------------------------------|------------------|---------------------|---------|--------------------|
| YAG<br>screen/Fl<br>at crystal |                  |                     |         |                    |
| 125                            | 50° 20°          | 6,5 - 16            | C(110)  | 220                |
| 100                            | 40,22°<br>23,80° | 5,1 – 8             | Si(110) | 220                |
| 75                             | 47,85°<br>21,75° | 8,1 <i>-</i><br>16  | Si(111) | 333                |
| 50                             | 37,25°<br>28,96° | 16,1 <i>-</i><br>20 | Si(110) | 660                |

#### HED-flex (outside IC1)

- Energy range (5 20 keV)
- 0.13 eV/100 200 eV
- C(110), R=100 mm, C(111), R=100; Si(110), R=50 - 150, Si(111), R=50 - 150 mm
- Pulse to pulse information with Gotthard detector
- 2D with Zyla 4.2 Plus or Zyla 5.5

#### CNRS spectrometer (comm with beam planned 2021)

- Energy range (5 20 keV)
- 0.3 eV/100 200 eV
- C(110), R=100 mm, C(111), R=100; Si(110), R=50 - 150, Si(111), R=75 mm
- Pulse to pulse information with Gotthard detector
- 2D with Zyla 4.2 Plus or Zyla 5.5
- PI-MTE:2048B (in vacuum in IC1)

#### Emission spectrometer for resolutions down to 2 eV



European XFEL

T. Preston et al., JINST, 2020

## Single crystal van Hámos spectrometer for higher energy resolution

- Dedicated von Hámos spectrometer
  - 4 vertical analyzer crystals to compensate for lower signal
  - Si (5,3,1) and Si (1,1,1)
  - Calculated energy resolution ~ 0.3 0.4 eV
  - First test on Ni foil performed 10 2020





Collaboration with J. Kaa (PhD student) and C. Sternemann



#### HRIXS set-up with 40 meV resolution

European XFEL

Zastrau et al., Journal of Synchrotron Radiation, in preparation

## FSS (Fast sample scanner)



Stepper motor-driven (2 axis) ~2um resolution
Mounted on PI hexapod
HUBER rotation stage below





### Sample exchanger



## The joint HED and HIBEF team at European XFEL



Great thanks to

European XFEL support groups

DESY-HIBEF



HZDR-HIBEF

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF