The HED Instrument at the European XFEL Status in 2020

<u>Ulf Zastrau</u> Group Head HED science instrument at the European XFEL

HED-HiBEF satellite meeting to the EuXFEL/DESY UM 2020, January 28th, 2020, EuXFEL, Germany

European XFEL—a leading new research facility

How it works: a closer look at the facility

European XFEL: beamlines and instruments

8 keV lasing in SASE1 with up to 1 mJ
 First experiments at SASE1
 First experiments at HED
 N

May 2017 Sept. 2017 May 2019

We achieved a lot since the last UM 2019

X-rays in HED OPT: 5 Dec 2018 – X-rays in HED EXP: 10 April 2019

HED schedules 2019, 2020

40% x-ray time to 3 user proposals							
January	February	March	April	May	June		
1 Tu Keeling	1 Fr	1 Fr sits+dump EXP	1 Mo 14	1 We 11.5 advanced commisioning	1 Sa		
2 We	2 Sa	2 Sa XGM, IPM1,2 hutch	2 Tu	2 Th 11.5 2151 Makita	2 Su		
3 Th	3 Su	3 Su IPM 1 and 2 Comm	3 We	3 Fr 11.5	3 Mo 23		
4 Fr	4 Mo	4 Mo IC1 target stage 10	4 Th	4 Sa 11.51 9 keV,	4 Tu		
5 Sa	5 Tu	5 Tu IC1 target stage	5 Fr hardware	5 Su 11.51	5 We Srienre nrneram:		
6 Su	6 We	6 We IC1 target stage	6 Sa hutch	6 Mo 11.5 GeV	6 Th 2180 Kraus/Kraus		
7 Mo :	7 Th	7 Th CRL1 collimation	7 Su access	7 Tu 11.5 GeV Experiment	7 Fr 6 keV		
8 Tu	8 Fr	8 Fr CRL2 focus	8 Mo 15	8 We 11.5 GeV Setup/Comm. for 2191:	8 Sa 2µm focus		
9 We	9 Sa	9 Sa CRL3 focus	9 Tu	9 Th 11.5 GeV	9 Su		
10 Th	10 Su	10 Su CRL3 focus	10 We diamond inline spectrorr	10 Fr 11.5 GeV Si 533 mono	10 Mo WeinWorksy 24		
11 Fr	11 Mo	7 11 Mo 11	11 Th diamond inline spectrom	11 Sa 11.5 GeV diced analyzers	11 Tu		
12 Sa	12 Tu	12 Tu ePIX100	12 Fr diamond inline spectrorr	12 Su 11.5 GeV targets	12 We		
13 Su	13 We 4BS and BIU OPT	13 We ePIX100	13 Sa CRL4 tests	13 Mo 21	13 Th		
14 Mo ::	14 Th view beam hutch	14 Th ePIX100	14 Su CRL4 tests	14 Tu	14 Fr		
15 Tu	15 Fr in OPT hutch	15 Fr JUNGFRAU	15 Mo CRL4 tests 10	15 We advanced commisioning	15 Sa		
16 We	16 Sa M1,2,3: angles EXP	16 Sa JUNGFRAU	16 Tu	16 Th 2191 Zastrau/Gregori Eu/CEEL/U.Oxford	16 Su		
17 Th	17 Su M1,2,3: angles cables pulled	17 Su JUNGFRAU	17 We	17 Fr	17 Mo 25		
18 Fr	18 Mo	18 Mo 12	18 Th final	18 Sa 7498 eV @ Si533 mono	18 Tu		
19 Sa	19 Tu and coating OPT	19 Tu XRD, curved rails	19 Fr hardware Gaut Policy	19 Su	19 We		
20 Su	20 We transm. w/ XGM hutch	20 We XRD, curved rails	20 Sa hutch	20 Mo Experiment 2	20 Th		
21 Mo	21 Th IPM1 vs XGM	21 Th XRD, curved rails	21 Su access	21 Tu Setup 2194	21 Fr		
22 Tu	22 Fr ATT transm. EXP	22 Fr 3rd harmonic	22 Mo	22 We Strategic development:	22 Sa		
23 We	23 Sa CRL3 transm. Cables	23 Sa 3rd harnomic	23 Tu	23 Th 2194 Schulze/Uschmann	23 Su		
24 Th	24 Su Si111 mono E2E	24 Su 3rd harmonic	24 We 11.5 GeV Experiment Setup/	24 Fr 6457 eV @ Si440	24 Mo 26		
25 Fr	25 Mo	25 Mo 13	25 Th 11.5 GeV Comm. for 2151:	25 Sa 1 shift setup change to 9835 eV @ diamond400	25 Tu		
26 Sa	26 Tu Si111 mono OPT	26 Tu	26 Fr 11.5 GeV all CRLs,	26 Su	26 We		
27 Su FXP	27 We Si533 mono hutch	27 We	27 Sa 11.5 GeV detectors, special tareets	27 Mo 3	27 Th		
28 Mo Cables	28 Th Si533 mono	28 Th	28 Su 11.5 GeV	28 Tu Experiment Setup/	28 Fr		
29 Tu delivered		29 Fr	29 Mo 11.5 GeV characterize 6keV 2µm for 2180.	29 We Comm. for 2180: HAPG snertrometer	29 Sa		
30 We		30 Sa	30 Tu 11.5 GeV	30 Th inline diamond spec.	30 Su		
31 Th		31 Su		31 Fr			

Calendar 2020, Run5

40% x-ray time to 4 user proposals

January	February	March	April	Мау	June
1 We	1 Sa	1 Su ePIX rad tests	1 We Kraus 14	1 Fr TW+PAM	1 Mo
2 Th	2 Su	2 Mo	2 Th 6000 keV	2 Sa TW+PAM	2 Tu 16.5 GeV slot12
3 Fr	3 Mo pulsed la	3 Tu slot2 mono cool	3 Fr CRL3	3 Su TW+PAM	3 We Nakatsutsumi 23
4 Sa	4 Tu heating IC2	4 We Mono111 edges 10	4 Sa LC: Tom	4 Mo	4 Th 9000 eV
5 Su	5 We 6	5 Th harmonics	5 Su	5 Tu <mark>slot9</mark>	5 Fr TW or pp laser
6 Mo	6 Th	6 Fr 3 COMM	6 Mo	6 We 3 COMM 19	6 Sa
7 Tu	7 Fr	7 Sa CRL 1&3, 9 & 6 keV	7 Tu <mark>slot6</mark>	7 Th preplasma TW	7 Su
8 We 2	8 Sa	8 Su (Makita CRL3)	8 We contingency 15	8 Fr LC: Carsten, Toma	8 Mo
9 Th	9 Su	9 Mo	9 Th setup time	9 Sa 2 COMM	9 Tu
10 Fr	10 Mo TW laser	10 Tu <mark>slot3</mark>	10 Fr 2 COMM	10 Su SAXS with TW	10 We 24
11 Sa	11 Tu maintenance	11 We Makita 11	11 Sa XANES spec	11 Mo 100 pC	11 Th
12 Su	12 We 7	12 Th 9000 keV	12 Su 2 COMM	12 Tu	12 Fr
13 Mo	13 Th	13 Fr CRL4	13 Mo XANES dem	13 We 20	13 Sa
14 Tu TÜV rehearsal	14 Fr	14 Sa LC: Motoaki	14 Tu	14 Th	14 Su
15 We TÜV rehearsal	15 Sa	15 Su	15 We setup time 16	15 Fr	15 Mo
16 Th TÜV rehearsal	16 Su	16 Mo	16 Th	16 Sa	16 Tu
17 Fr	17 Mo TW laser	17 Tu Intervention	17 Fr	17 Su	17 We 25
18 Sa	18 Tu EMP testing	18 We 12	18 Sa	18 Mo	18 Th
19 Su	19 We detector 8	19 Th	19 Su	19 Tu <mark>slot10</mark>	19 Fr
20 Mo TÜV test	20 Th	20 Fr	20 Mo	20 We 100 pC 21	20 Sa
21 Tu TÜV test	21 Fr beam	21 Sa	21 Tu 11.5 GeV slot7	21 Th 5 COMM	21 Su
22 We 4	22 Sa <mark>height</mark>	22 Su	22 We Schlenvolgt 17	22 Fr PAM studies	22 Mo
23 Th	23 Suetc	23 Mo	23 Th 6457 eV	23 Sa pp+TW laser	23 Tu
24 Fr	24 Mo	24 Tu slot4	24 Fr LC: Sebastian	24 Su LC: Motoaki	24 We 26
25 Sa	25 Tu <mark>Slot1</mark>	25 We Lee 13	25 Sa	25 Mo	25 Th
26 Su	26 We transmission 9	26 Th 9000 eV	26 Su	26 Tu <mark>slot11</mark>	26 Fr
27 Mo	27 Th CRL1, 2	27 Fr CRL4	27 Mo	27 We 16.5 GeV 22	27 Sa
28 Tu	28 Fr alignment	28 Sa LC: Jan-Patrick	28 Tu 11.5 GeV slot8	28 Th dDAC+AGIPD IC2	28 So
29 We UM	29 Sa SBM + gratings	29 Su	29 We contingency 18	29 Fr day: laser setup	29 Mo
30 Th UM		30 Mo	30 Th contingency	30 Sa	30 Tu
31 Fr UM		31 Tu slot5		31 Su high-Z det. test	

🚾 💻 European XFEL

HED Calendar 2019, 4th Call 40% x-ray time to 4 user proposals

July		August		September		October		November	December
1 Mo 27	1 Th		1 Su		1 Tu		1 Fr		1 Su
2 Tu	2 Fr		2 Mo	36	2 We		2 Sa		2 Mo 49
3 We	3 Sa		3 Tu		3 Th	Tag 6 Dt Einteit	3 Su		3 Tu
4 Th	4 Su		4 We		4 Fr		4 Mo	45	4 We
5 Fr	5 Mo	32	5 Th		5 Sa		5 Tu		5 Th
6 Sa	6 Tu		6 Fr		6 Su		6 We	11.5 GeV	6 Fr
7 Su	7 We	5 USER (resch.d)	7 Sa		7 Mo	41	7 Th	2 COMM: IPM2	7 Sa
8 Mo 28	8 Th 🛊	# 2151 Makita	8 Su		8 Tu		8 Fr	3 COMM:	8 Su
9 Tu	9 Fr (CLR3, 4	9 Mo	37	9 We	16.5 GeV	9 Sa	CAEP spectrom	9 Mo 50
10 We	10 Sa f	focus, nanofoc	10 Tu		10 Th	5 #2392 USER	10 Su	8 keV	10 Tu
11 Th	11 Su	9 keV 1mJ 1 bn	11 We	5+1 COMM:	11 Fr	McWiliams IC2	11 Mo	46	11 We
12 Fr	12 Mo	33	12 Th	x-ray timing	12 Sa	DAC community	12 Tu		12 Th
13 Sa	13 Tu		13 Fr	PAM-TW laser	13 Su	14-18 keV (MID)	13 We	11.5 GeV	13 Fr
14 Su	14 We	5+1 USER EXPT	14 Sa	10 Hz 1 bunch	14 Mo	42	14 Th	5 COMM:	14 Sa
15 Mo 29	15 Th 🕇	# 2353 Lee	15 Su	7.5 - 12 keV 1bn	15 Tu		15 Fr	SDL and	15 Su
16 Tu	16 Fr)	k-ray heating	16 Mo	38	16 We	5 IHR (ex #2314)	16 Sa	SDL imagers	16 Mo 51
17 We 4.5 MHz 2 COM	17 Sa r	nanofocus 200nm	17 Tu		17 Th	Konopkova/St'mn	17 Su	8 keV	17 Tu
18 Th FSS (8-14 keV)	18 Su 🤇	9 keV 1 mJ 1 bn	18 We	CONTINGENCY	18 Fr	DAC spectroscoy	18 Mo	47	18 We
19 Fr 3 IHR:	19 Mo	34	19 Th	1 IHR	19 Sa	IC1	19 Tu		19 Th
20 Sa hrIXS 7.5 keV	20 Tu		20 Fr	3 COMM:	20 Su	13 keV	20 We		20 Fr
21 Su IXS 7.6 keV	21 We	CONTINGENCY	21 Sa	SAXS analyzer	21 Mo	43	21 Th		21 Sa
22 Mo 30	22 Th	1 IHR	22 Su	9 keV 1 bn	22 Tu		22 Fr		22 Su
23 Tu	23 Fr	3 COMM:	23 Mo	39	23 We	5 # 2293 USER	23 Sa		23 Mo 52
24 We maybe 4.5 MHz	24 Sa	HIREX II	24 Tu		24 Th	Dresselh/Eggert	24 Su		24 Tu
25 Th 4+1 COMM:	25 Su 8	8-10 keV 1 bn	25 We	3 COMM:	25 Fr	BD Microscopy	25 Mo	48	25 We
26 Fr ePIX10k, JF burst	26 Mo		26 Th	IC2 and VAREX	26 Sa		26 Tu		26 Th
27 Sa 8-12 keV 1-100 b	27 Tu		27 Fr	14 keV 1-100 bn	27 Su	11 keV	27 We		27 Fr
28 Su CONTINGENCY	28 We		28 Sa	2 COMM: pulsed	28 Ma	44	28 Th		28 Sa
29 Mo 31	29 Th		29 Su	laser heating	29 Tu		29 Fr		29 Su
30 Tu	30 Fr		30 Mo	40	30 We		30 Sa		30 Mo 1
31 We	31 Sa				31 Th	Reformationstag			31 Tu

In our first year of x-ray operation, **40%** x-ray time is given to user proposals

Unique capabilities arise when:

Couple XFEL beam to powerful drivers

Diamond Anvil Cells (available)

dynamic DAC; pulsed laser heated DAC; double-stage DAC

Powerful optical lasers (2020-2021) 100 J 15 ns 10 Hz; 400 TW 30 fs 10 Hz

XFEL split&delay line (2021)

x-ray pump-probe, 0-20 ps delay

60 T pulsed magnetic field coil (2021) cryogenic sample environment, superconductivity

HED – research at extremes

Further projects

Isobaric heating Cryogenic jet targets High-rep solids targets EMP-hard X-ray detectors High-purity polarimetry

6th call parameters (closed Dec 11, 2019), for 2020-II

We (still) offer only a reduced scope

- 5-24 keV x-ray photon energy
- ❑ Single pulses on demand, or 10 Hz, or up pulse trains with 4.5 MHz rep. rate and max. 200 µs window
- □ SASE spectrum (about 0.2% bandwidth)
- □ 4-bounce monochromator (1 eV bandwidth) at 10 Hz
- □ High res-mono@7.49 keV (about 40 meV bandwidth) at 10 Hz
- ☐ full focusing capability CRL 1,2,3,4 any focus from parallel beam (few µrad divergence) down to sub-µm foci
- "HIREX2" spectrometer in the SASE2 branch (before the separation into MID and HED) for monitoring the incident spectrum

optional (requires R&D support from HED)

□ bent diamond crystal spectrum analyzer downstream of the interaction

Overview of the high energy density (HED) instrument

5-25 keV photon energy ~10¹⁰ (25 keV), ~10¹² (5 keV) photons 2-100 fs pulses sub-µm focus up to few mm

HED experimental hutch

HED vacuum compatible and compact X-ray detectors

Parameters	ePix100	ePix10k	Jungfrau	Gotthard-I	
	SLAC	SLAC	PSI	PSI	
Sensor	300 µm Si	300 µm Si	320 μm Si (upgrade 450 μm Si)	320 µm Si	
Sensor size (pixel)	704x768 (35x38 mm ²)	352x384 (35x38 mm ²)	512x1024 (40x80 mm ²)	1x1280 (8x64 mm²)	
Pixel size (µm)	50	100	75	50	
Dynamic range	10² (@ 8 keV)	10 ⁴ (@ 8 keV)	10 ⁴ (@ 12 keV)	10 ⁴ (@ 12 keV)	
Noise (eV)	< 280	< 560	< 450	< 900	
Repetition (Hz)	120	120	2000 (200 tested) 0.5MHz in burst mode, 16 images on-chip memory	40,000 0.8MHz in burst mode, 128 images digital memory	
# of modules	2	3	4	2	

The real detectors for inside IC1

Platforms – Interaction Chamber 1

- 2 ePIX100 detectors for spectroscopy, imaging or XRD, 50um pixel pitch, ~700x700 pixels, 10 Hz. Very low noise
 2-3 ePIX10k (gain switching, 10⁴ dynamic range) for XRD or spectroscopy, 100um pixel pitch, ~350*350 pixels, 10 Hz
 2-3 JUNGFRAU detectors (gain switching 10⁴) at 10 Hz (no burst mode) for XRD or spectroscopy (pixel pitch 75um, detector size ~ 3.5*7 cm)
- Possibility to mount area detectors or spectrometers on curved rails in vacuum on vertical breadboard
- Von-Hamos HAPG spectrometers (RoC 50mm and 80mm, crystals available 40um HAPG, 100um HAPG, 200um HOPG)
- High-resolution monochromator and diced analyzers (Si 533) for ~50meV spectroscopy at 7.490 eV
- stepper-motor target stage on hexapod and precision rotation stage
 CRL4 for sub-µm foci

IC1 – flexible large chamber

- Motorized carriages
- Arc R = 306, 517, 750mm
- Breadboard moveable in x-axis
- Mounting of X-ray detectors
- Mounting of spectrometers

Interaction Chamber 1 (IC1)

FSS (Fast sample scanner)

Stepper motor-driven (2 axis)
Mounted on PI hexapod
HUBER rotationstage at the bottom

IC1 sample stack

Inline microscope

'Fast' sample scanning stages

- Stepper motor
- Anodised
- Mostly Al
- Max speed 20mm/sec
- Min resolution <2µm

Insulation plate 5 – 20 mm thick

Design of HED von Hamos spectrometers

The real HAPG von-Hamos in IC1

Data from HED 50mm HAPG spectrometers and detectors

Nano-focused beam (CRL 4) - HIBEF contribution

First tests in August 2019 at 9 keV, rescheduled for March 2020

Be CRL4 and phase corrector aligned for nano-focused beam

Nanofocusing Setup in IC1

Platforms – Interaction Chamber 2, pp-laser

IC2

Diamond Anvil Cell (DAC) setup for precision XRD

2 VAREX flatpanel detectors in IC2 (10 Hz)

Pulsed laser heating for DAC research

Dynamic DAC (dDAC)

Pulsed laser heating

double side laser heating in DACs, 2x 100 W NIR lasers in pulse mode or cw. mode. Pulse duration 10-500 ns, and >1 us possible

temperature: time resolved spectral radiometry using streak camera system

European XFEL

IC2 – a new DAC platform at HED (shock setup in 2020) First DAC community experiment Oct 9-14, 2019

$CRLs \rightarrow down to nm focusing$

courtesy to C. Strohm

European XFEL

Status of the large HiBEF lasers

Multi-100 TW laser (Amplitude)

Installation complete Focusing, timing: until end-2019 X-ray commissioning: 1st half of 2020 Available for Users: 2nd half of 2020 community proposal submitted

DiPOLE 100-X laser (CLF, UK)

Delivery complete Installation at HED ongoing Beam transport to IC1 & IC2: 2020 X-ray commissioning, VISAR: 2021 Available for Users: 2nd half of 2021

Pump-probe (PP) laser for Run 6 (with limited capability)

- "Limited capability" refers to timing jitter, pulse energy and stability, and repetition rate. This laser will be in its early phase.
 - Anticipated parameters

PP laser at 800 nm wavelength

- 15 fs duration, Fourier-limited bandwidth (going for narrower bandwidth with longer pulse duration is an option)
- 100 kHz, max ~2 mJ (10Hz or shot-on-demand is possible. Higher repetition than 100 kHz with lower pulse energy is an option)
- Second harmonic (400 nm) is potentially available

PP laser at 1030 nm wavelength

- ~ 1 ps duration
- 100 kHz, max ~35 mJ (10Hz or shot-on-demand is possible. Higher repetition than 100 kHz with lower pulse energy is an option)
- Second/third harmonic (515/343 nm) are potentially available

Outlook

HED has completed	8 "early"	user experiments	between May-Nov 2019
-------------------	-----------	------------------	----------------------

In 2020-I, we have scheduled 4 more user experiments

HI-OL (few 100 TW) Amplitude laser	
100 TW shot on target, 14 MeV protons demonstrated	12/2019
community proposal by HZDR (submitted)	2 nd half 2020
Pump-probe laser ready	
Hand-over to HED	Spring 2020
Inhouse research activity using pp-laser	June 2020
DiPOLE laser (for laser-shock compression)	
Installation at HED	ongoing
Ready for users (first, only community proposal)	2021
AGIPD detector delivery	delayed
Mitigation scenario: Mini-half in air	2020-II
Split-and-Delay line	delayed

Beamtime allocation and Priority Access for HIBEF

Amount of beamtime at HED (preliminary)

Every half year: ~ 14x 5-shift weeks with x-ray beam at HED instrument
 still commissioning new equipment and improving existing devices.
 shared bunch mode using fast kicker, e.g. 3 instruments run simultaneously

5% are management reserve
15% is HED group inhouse time (commissioning, method development, research)
50 to 80% are available for regular user proposals (incl. setup time)
After HIBEF contract has been signed, up to 30% is priority access time for HIBEF UC

Proposal Review Panel
One panel per instrument
Independent experts
Meet every 6 months

The joint HED and HIBEF team at European XFEL

Great thanks to

HP Liermann & team at ECB, DESY

HED group at HZDR

HELMHOLTZ

European XFEL

X-ray focus characterisation at HED

Mikako Makita High Energy-Density (HED) science group Instrument Scientist

EXFEL HED Satellite Meeting, 28Jan2020

European XFEL

P. Bougiatioti

Chronologial Overview

Overview

Progress & preliminary results
 Different focusing scheme
 Calibration overview
 impressions

Future plans

- Alignment
- Focus estimation
 - fermanent' setup at beamline...

CRL combinations

- Photon energy: 9 keV
- ➢ µm focus CRL(CRL3)
- > Expected diffraction limited spot size: $2\sigma = 1.0-1.5\mu m$

- Average pulse energy: 1.5 mJ
- µm focus rough calibration
- Method optimisaion
- Beamline optimisation genera

- Photon energy: 9 keV
- ➢ µm focus CRL(CRL3)
- > Expected diffraction limited spot size: $2\sigma = 1.0-1.5\mu m$

- Photon energy: 9 keV
- ➢ µm focus CRL(CRL3)
- > Expected diffraction limited spot size: $2\sigma = 1.0-1.5\mu m$

- Photon energy: 9 keV
- ➢ µm focus CRL(CRL3)
- > Expected diffraction limited spot size: $2\sigma = 1.0-1.5\mu m$

Ablation imprint

LiF : Intensity distribution in focus

Assuming a linear response : <u>79.82 % energy contained within FWHM</u>
 Assuming a nonlinear response : <u>81.46 % energy contained within FWHM</u>

AUGUST

- \succ nm focus CRL: f ~ 0.3m (25 lenses)
- Diffraction limited ~ 100nm focus
- All 5 methods to test

- Average pulse energy: 0.4 r
- Impression of CRL4
- Phase plate optimisation
- Beam optimisation for CRL4

Setup

Near-focus region

nm CRL contrimbution from A. Schropp &

Sample stack

📕 European XFEL

Talbot :

CRL & phase plate alignment and focus position estimate

 \rightarrow Away from

focus

Focal position at CRL4_Z=144.6mm

Fig: determination of focus position from Talbot fringe. X axis = CRL zposition. Y-axis = fringe frequuency. Red = measured. Blue = linear fit.

Focal position estimate (manual z-scan)

Talbot :

CRL & phase plate alignment and focus position estimate

European XFEL

Ablation Imprint analysis

LiF Imprint analysis

- Best fitting FWHM : d_{FWHM} ~ 350 nm ± 150 nm
- Rayleigh range: z₀ 1 2 mm

November

- Photon energy: 8 keV
- Collimation CRL, µm focus CRL 3
- Finalise calibration for µm range

- Average pulse energy: ~0.8 mJ
- Damaged CRL3
- CRL1 collimation & source point (with Talbot)

19

Damaged CRL?

Arm6 only

Confirmation of Damaged CRL...

Defocused beam, with a strong halo and very strange, but stable (Φ like) profile

European XFEL

Confirmation of Damaged CRL...

Towards focus

Away from focus

In the meantime parallel beam analysis...

March 2020!

European XFEL

Summary

CRL impressions so far

μm focus FWHM ~ 4μm

Next => Confirm, and possibly improve

nm focus FWHM estimate ~ 260 - 500 nm

Next => Higher resolution measurement, with & without mono

Development & Demonstration of methods

Next => Ongoing, and going well ③

Further plans

Long term solution at HED ?

- > "Permanent" setup
- Source point for collimation in the tunnel
- Strategy of focus measurement for each experiments

