

#### Ideas for microfluidics experiments at MID

Sarah Köster, Tim Salditt

Institut für Röntgenphysik, Georg-August-Universität Göttingen

Early Science Workshop @ MID 27.01.2015



# Cellular imaging – light microscopy





- live cell imaging
- molecule specific labeling
- extensive sample preparation
- small penetration power
- spatial resolution: ~200 nm (but: STED, STORM!!)

images: Rosmarie Sütterlin, Ueli Aebi (Biozentrum Basel)

# Cellular imaging – electron microscopy



#### SEM image by P. Walther, M. Beil, Uni Ulm



TEM images by W. Möbius, MPI EM Göttingen

- static samples (dry, cryo...)
- imaging of surfaces/slices
- very extensive sample preparation
- spatial resolution: nm

Sarah Köster, University of Göttingen

# Cellular imaging – X-rays?!



- Introduction
- Imaging cells with X-rays: nano-diffraction, ptychography
- Sample environments: microfluidics
- Experiments @ FLASH and SACLA & Ideas for microfluidics experiments @ MID

### Networks in epithelial cells



#### keratin bundles



SEM image by P. Walther, M. Beil, Uni Ulm

- occur mainly in epithelial cells
- provide tensile strength
- single filament thickness ≈ 10 nm

Sarah Köster, University of Göttingen

#### Nano-diffraction setup





- small beam size on sample  $\approx 150 \times 150 \text{ nm}^2$
- scattering: high resolution in real space and in reciprocal space
- *local, internal* bundle structure and orientation
- ID 13/ESRF, P10/PETRAIII, cSAXS/SLS

Weinhausen et al, New. J. Phys. 2012, Weinhausen & Köster Lab Chip 2013

#### Strategy



#### (1) chemically fixed & plunge frozen & freeze-dried cells

- good electron density contrast
- can be prepared beforehand
- no biosafety-level necessary
- 2 chemically fixed & hydrated (buffer) cells
  - fewer preparation steps
  - "test": aqueous environment
  - preparation beforehand
  - no biosafety-level necessary
- 3 living cells (medium)
  - dynamic measurements (microfluidics)
  - "in situ", "in operando"

# X-ray dark field images

#### fixed, freeze-dried cells

# ID13/ESRF

visible light fluorescence (inverted gray scale)





step size 2  $\mu m$ 

#### Internal nanostructure



#### fixed, freeze-dried cells



#### Weinhausen et al, New. J. Phys. 2012

Sarah Köster, University of Göttingen

### Hair cell stereocilia

#### actin bundles

- sensors in the inner ear
- highly parallel bundles of actin
- arrangement of the filaments?



David Furness, Keele University







а

#### Internal nanostructure



#### actin; fixed, freeze-dried cells





#### Scattering geometry









Piazza et al., ACSNano, 2014



#### Simulation

Tim Salditt, Göttingen







Priebe et al., Biophys. J., 2015

Sarah Köster, University of Göttingen

# Ptychograpy





#### Piazza et al., ACSNano, 2014

Sarah Köster, University of Göttingen



- Introduction
- Imaging cells with X-rays: nano-diffraction, ptychography
- Sample environments: microfluidics
- Experiments @ FLASH and SACLA & Ideas for microfluidics experiments @ MID

### A step forward: hydrated cells



#### measurements on hydrated cells

- native protein structure
- no artifacts from freezing/drying
- lower electron density contrast
- absorption/scattering due to water layer
- increased radical production and mobility in water

#### sample environment

- compatible with x-ray diffraction
- compatible with cell culture
- small/light enough to fit into the set-up

Sarah Köster, University of Göttingen

### A microfluidic chamber for cells



- fluid flow: nutrient supply and waste removal
- Si<sub>3</sub>N<sub>4</sub> membrane windows as substrate and window material for X-rays



### A microfluidic chamber for cells









• channel size  $\approx 500 \times 150 \ \mu m^2$ 

#### Fixed-hydrated cells

#### fixed, hydrated cells



x 10⁵



good signal-to-noise ratio in dark-field image

# Radial intensity





- different scan regions
- averaged scattering patterns
- azimuthal integration
- background subtraction
- power-law fit



# Initially living cells

#### living cells

- P10/PETRA III
- transport in microtubes filled with mediumstorage in petri dishes incubator



asymmetric scans to skip damaged regions

#### **Radial intensity**









 different (higher) power law exponents for living cells compared to fixed-hydrated cells

Weinhausen et al, PRL 2014

Sarah Köster, University of Göttingen

#### Structural changes





### Conclusions

- X-rays provide a complementary approach for imaging cells ( light microscopy, electron microscopy)
- different (contrast) methods are currently being developed and improved
- radiation damage remains a great challenge
- reciprocal space provides structural information at high resolution



Howells et al., 2009

**A** 

- Introduction
- Imaging cells with X-rays: nano-diffraction, ptychography
- Sample environments: microfluidics
- Experiments @ FLASH and SACLA & Ideas for microfluidics experiments @ MID

Sarah Köster, University of Göttingen

#### Requirements @ MID

- scintillation-based detector (AGIPD) @ ~ 10 m from focus
- possibly second detector, "drilled-through"
- optical microscopy for sample alignment
- feed-through for connections to microfluidic chambers



### Acknowledgements

Göttingen:

Tim Salditt Susanne Bauch Britta Weinhausen Oliva Saldanha Clement Hemmonot Valeria Piazza

Wiebke Möbius Tobias Moser







Juliane Reinhardt

Dresden: Jens Patommel

Winheim



Heidelberg: Harald Herrmann, Norbert Mücke, Stefan

Grenoble: Manfred Burghammer, Michael Reynolds

Andreas Menzel

Aachen: Rudolf Leube, Reinhard Windoffer, Anne Kölsch

Hamburg: Anders Madsen, Jörg Hallmann, Christian Schroer,





Excellence Initiative SFB 755, SFB 937, CMNPB, KO 3572/5-1

> Deutsche Forschungsgemeinschaft

Deutsche Telekom Stiftung









Bundesministerium für Bildung und Forschung

**DFG** Sarah Köster, University of Göttingen