Ultrafast melting of colloidal crystals observed in pump-probe experiments at LCLS

Ivan Vartaniants

DESY, Hamburg, Germany National Research University, 'MEPhI', Moscow, Russia

ast Name | Title of Presentation | Date | Page

Coherent X-ray Scattering and Imaging Group at DESY

Present members:

- S. Lazarev
- I. Besedin
- A. Shabalin
- D. Dzhigaev

- I. Zaluzhnyy
- M. Rose
- O. Gorobtsov
- P. Skopintsev

Former members:

- A. Zozulya (now@PETRA III)
- A. Mancuso (now@XFEL)
- O. Yefanov (now@CFEL)
- R. Dronyak
- J. Gulden (now@FH-Stralsund)
- U. Lorenz (now@University of Potsdam
- A. Singer (now@UCSD)
- R. Kurta (now@XFEL)

Photonic crystals

Photonic crystals in nature

Artificial photonic crystals

Photonic band gap materials

https://www.theochem.kth.se/research/phot_c.,_ t/Photonic_Crystals.html

First and Last Name | Litle of Presentation | Date | Page 3

Tuning of properties by external fields

Pumping energy

Strain field engineering

Y. Y. Hui et al., ACS Nano 7 (8), 7126 (2013)

M. Daryl et al., PRL 108, 033902 (2012)

Incremental heating

http://www.st-andrews.ac.uk/microphotonics/Gallery.php

http://www.amolf.nl/research/nanooptics/news/detailpage/artikel/pumped-photonic-crystal-accelerates-slow-light/

Colloidal crystals grown by self-organization

First and Last Name | Title of Presentation | Date | Page 5

Growth of the colloidal crystal film

Vertical deposition method

Oven-setup

J-M. Meijer, et. al. Langmuir (2012), 28, 7631–7638.

Polystyrene colloidal crystal

Structural evolution of colloidal crystal films in the process of melting

E. Sulyanova et al., Langmuir (2015) (accepted)

X-ray diffraction patterns measured *in situ* during incremental heating

Experiment A

15 keV, 50 x 50 μm unfocused beam

Experiment B 8 keV, 3.5 x 2.8 μm focused beam

First and Last Name | Title of Presentation | Date | Page 9

X-ray diffraction pattern of the experiment A measured at room temperature

X-ray diffraction pattern of the experiment A measured at room temperature. Same pattern with SAXS contribution subtracted. Enlarged area of (b) showing Bragg peak indexing.

Mesoscopic scale

Lattice distortion parameter g_q and domain misorientation parameter g_{φ} Polysterene particle diameter *D* and average lattice parameter

The model of colloidal crystal melting process

Nano- scale

Mesoscopic scale

Study of dynamics in colloidal crystals

First and Last Name | Title of Presentation | Date | Page 13

Observation and tuning of hypersonic bandgaps in colloidal crystals

- Polysterene spheres in air, glycerol, PDMS and silicon oil
- > *D* = 256 *nm*, 307 *nm*
- > Brillouin spectroscopy
- > No sintering

Supported opal and scattering geometry

W. Cheng et al., Nature Materials (2006)

Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials

- > Silica spheres, 359 nm diameter, 10-12 layers
- > IR energy converted into vibrations with an 100 nm thick AI foil ("hypersonic transducer")
- > Sintered crystal, coupling parameter $\chi = D/2a 1 = 0.015 \pm 0.005$
- > Reflectivity measurements

Reflectivity measurements

Pump-probe experiment on colloidal crystals at FLASH

Pump probe experiment on colloidal crystal film at FLASH

Study of colloidal crystal in the temporal domain

- ✓ Elastic vibration of the spheres (Lamb modes)
- ✓ Collective vib
- ✓ Order-disorde

Pump-probe experiment:

- > Pump: 800 nm IR laser
- Probe: 8 nm FEL radiation
- Time delay from -100 ps up to 1000 ps, with 50 ps steps

R.Dronyak et. al., Phys Rev B 86 (2012)

Pump-Probe Experiment on Colloidal Crystal Film at FLASH

Single-shot diffraction patterns at different time delay

The momentum transfer vector \mathbf{Q} and the horizontal W_x and vertical W_y size of the peaks were analyzed

R.Dronyak et. al., Phys Rev B 86 (2012)

Pump-Probe Experiment on Colloidal Crystal Film at FLASH

Time dependence and power spectrum of $|\mathbf{Q}|$ for the selected 2/3(422) and 220 Bragg peaks

Theoretical calculations of vibrations of a 400 nm isotropic elastic sphere based on the Lamb theory reveal a 5.07 GHz eigenfrequency of the ground (breathing) mode

Pump-probe experiment on colloidal crystals at LCLS

600m e: accelerator (SLAC)

(SLAC)

Electron Beam Dump 40m facility to separate e and x-ray beams

Front End Enclosure:40m facility for photon beam diagnostics (LLNL)

Injector/Linac _____ e Beam Transport: 227m above ground facility to transport electron beam (SLAC)

Undulator Hall: 170m tunnel housing undulators (ANL)

Near Experimental Hall: 3 experimental hutches. prep areas, and shops (SLAC/LLNL)

X-Ray Transport & Diagnostic Tunnel: 210m tunnel to transport photon beams (LLNL)

Far Experimental Hall 46' cavern with 3 experimental hutches and prep areas (SLAC/LLNL)

See also the Poster on the Users Meeting

Pump-Probe experiment on colloidal crystals

Experimental setup

First and Last Name | Title of Presentation | Date | Page 21

CSPAD detector

Pump-Probe experiment on colloidal crystals

Samples

First and Last Name | Title of Presentation | Date | Page 27

PS2_AI_2 (0.1v% D)

Top to middle of sample. At the top the sample is quite damaged, but the middle region with a lot of layers and larger area's between the cracks has higher quality.

Distance between cracks around 50 µm

In the film parts lines typical for stacking defects can be seen. These indicate that even at this thick region the film is still ordered.

1-st experimental geometry

2-nd experimental geometry

Parameters of X-ray and IR laser beams

1. X-ray beam

- E=8 keV
- Pulse duration: \leq 50 fs
- Flux_{sample} ~10⁹ ph/pulse
- Focus ~ 50 μm
- Energy bandwidth ~10⁻⁴

2. Laser beam

- $\lambda_{las} = 800 \text{ nm}$
- Pulse duration: \leq 50 fs
- E ~ 2 mJ
- Power: P ~ 4*10¹⁰ W
- Focus ~ 100 μm

Energy of infrared laser

First and Last Name | Title of Presentation | Date | Page 32

Pump-Probe experiment on colloidal crystals

Pump-Probe on Colloidal Crystals

	Camera: XPP Gige 6		
meras ShowHide Data Processing Orientation Zoom Markers/ROI Administration		Cam Car Car Date	era 1era XPP Gige 6 ♦ nected YES 1Rate 3.4 Hz Display Rate 3.4 Hz
Gaze		- Cotor Hot Min Max	Map
a set and		1 Displ 2 @ 1	iorce Color Image to Grayscale ay Single Frame (at ~5 Hz) Local Average (at 5Hz / #)
	-	Mark	er X 454 Y 497 X 1334 Y 663
	0	3 4 Regi	X 1375 Y 70 X 916 Y 483 on of Interest 0 Y 0
		Zoon	[Set ROI] Reset ROI Zoom In (2x) Zoom Out (0.5x)
	• •	- Gige Carr Gair	Zoom to ROI Zoom to Actual Size Camera Settings Tera Mode Fixed Rate
and the second		Acqu	uisition Time (s) 0.3 Lisition Period (s) 0.2

an 240.63 Std 98.28 Var/Mean 40.14 (0,0) W 1388 H 1038 t# 1/1 Color scale [0,741] Zoom 3.138 7): 143 1:(454,497): 345 2:(1334,863): 130 3:(1375,70): 239 4:(916,483): 666

Damage produced by laser power 7° wave plate angle (~50 μ J)

Study of ultrafast melting of colloidal crystals

Run 187 first 100 frames at one position X-rays only

Intensity distribution along angular direction (ANG)

Intensity distribution along radial direction (RAD)

Pump-probe experiment

Decay of integrated intensity

Decay of integrated intensity of the peaks

$$\frac{\Delta I(\tau)}{\langle I \rangle} = \frac{I_1^{on}(\tau) - \left\langle I^{off} \right\rangle}{\langle I^{off} \rangle}$$

τ is time delay between laser and X-ray pulses

Decay of the interplaner distance

Decay of the interplanar distance

Experimental diffraction pattern

$$\frac{\Delta Q(\tau)}{\langle Q \rangle} = \frac{Q_1^{on}(\tau) - \left\langle Q^{off} \right\rangle}{\langle Q^{off} \rangle}$$

Crystallographic directions in colloidal crystal

 τ is time delay between laser and X-ray pulses

Bragg peak's broadening in q-direction

Bragg peak's broadening in q-direction

Bragg peak's broadening in φ -direction

Bragg peak's broadening in φ -direction

1. Energy transfer from IR laser to colloidal crystal

2. Response of colloidal crystal lattice

Model of ultrafast melting of colloidal crystal

Energy transfer from IR laser to colloidal crystal

- IR wavelength: 800 nm
- Energy: 1.5 eV
- Energy of chemical bonds: (C-C, C-H) ~3-4 eV
- Absorption coefficient of 800 nm radiation in polystyrene: 10⁻⁴
- Temperature raise: one-two degrees

Members of the team

On site

- 1. I. Vartaniants (DESY, Germany) (spokesmen)
- 2. M. Chollet (LCLS, USA) (LCLS beamline responsible)
- 3. J.M. Meijer (University of Utrecht, Nederlands)
- 4. R. Kurta (DESY, Germany)
- 5. D. Dzhigaev (DESY, Germany)
- 6. O. Gorobtsov (DESY, Germany)
- 7. A. Singer (UCSD, USA)
- 8. S. Boutet (LCLS, USA)
- 9. G. Williams (LCLS, USA)
- 10. D. Zhu (LCLS, USA)

11.O. Magnussen (University of Kiel, Germany) (observer)

Off site

- 1. A. Petukhov (University of Utrecht, Nederlands)
- 2. S. Lazarev (DESY, Germany)
- 3. A. Shabalin (DESY, Germany)
- 4. O. Yefanov (CFEL, Germany)
- 5. E. Sulyanova (IC RAS, Russia)

Experiment is over!!! Date | Page 49

Thank you for your attention

First and Last Name | Title of Presentation | Date | Page 50