

Thomas Roth

Outline

European XFEL

- Focusing with CRLs and beamsizes
- Monochromators
- Split and Delay Line
- more X-ray optics
- MID Hutches Overview

• SASE 2 beam parameters

- Focusing with CRLs and beamsizes
- Monochromators
- Split and Delay Line
- more X-ray optics
- MID Hutches Overview

XFEL SASE 2 beam parameters

e⁻ electron beam operates at different energies and different bunch charges:

E _{e-} = 17.5 GeV	q _{e-} = 20 pC
E _{e-} = 14 GeV	q _{e-} = 250 pC
E _{e-} = 12.5 GeV	q _{e-} = 500 pC
(also E _{e-} = 8 GeV)	q _{e-} = 1 nC

26th of January 2015, MID workshop, Hamburg Thomas Roth

XFEL SASE 2 beam parameters

35 undulators of 5m magnetic length

E_{e-} = 17.5 GeV E_{e-} = 14 GeV E_{e-} = 12.5 GeV

undulator period λ_u = 40 mm 10 mm minimum gap (up to >20 mm)

always using 1st undulator harmonic

(3rd harmonic is 3 orders of magnitude less, unless seeding on 3rd)

 $26^{\mbox{th}}$ of January 2015, MID workshop, Hamburg Thomas Roth

Schneidmiller & Yurkov: "Photon beam properties at the Europ. XFEL" 2011/2013

0

Thomas Roth

0

0.2

26th of January 2015, MID workshop, Hamburg

0.6

bunch charge [nC]

0.4

0.8

1

Schneidmiller & Yurkov: "Photon beam properties at the Europ. XFEL" 2011/2013

10

15

energy [keV]

20

25

5

Thomas Roth

pulse duration [fs]

26th of January 2015, MID workshop, Hamburg Thomas Roth

intensity [a.u]

8980

8990

9000

energy [keV]

9010

9020

spectra courtesy of V. Kocharyan, I. Agapov et al.

intensity [a.u]

intensity [a.u]

C*(004)

MID Beam Parameters and Optics European transmittance of X-ray diffraction Εl 12 energy dependent tranmission Fourier transform respecting causality Abs[T] 8 Abs[FT(T)] Arg [FT(T)] - 15 Arg[T] 10⁵ 1,0 \sim 10000 10 0,8 n Arg[T] [rad] Arg[FT(T)] [rad] 5 Elsqy 0,6 0 0,4 -5 0,2 -16 10 -10 0,0 -20 0,150120 0,150121 -20 -10 0,150117 0,150118 0,150119 -30 10 -50 -40 0 λ [nm] s [µm] time 1,5x10⁵ 3x10¹ 1,2x10¹² 2x10 1,0x10¹² "wake" F(x)[A.U.] 1,0x10⁵ 8,0x10¹¹ P(ג)[A.U.] P[W] 0,1501 0,1501 0,1501 0,1501 0,1501 0,1501 6,0x101 λ[nm] 5,0x10⁴ 4,0x10¹¹ 2,0x10¹¹ 0,0 0,0 0,1502 0,1496 0,1498 0,1500 0,1504 0,1506 0,1508 -15 -25 -20 -10 -5 0 λ[nm] s[µm]

V. Kocharyan, I. Agapov, G. Geloni et al.

spectra courtesy of V. Kocharyan, I. Agapov, G. Geloni et al.

XFEL MID/HED photon tunnel

MID photon (x-ray) tunnel

26th of January 2015, MID workshop, Hamburg Thomas Roth

XFEL MID beamline overview

26th of January 2015, MID workshop, Hamburg Thomas Roth

- SASE 2 beam parameters
- Focusing with CRLs and beamsizes
- Monochromators
- Split and Delay Line
- more X-ray optics
- MID Hutches Overview

20

EuropeanXFELFocusing with CRLs

- SASE 2 beam parameters
- Focusing with CRLs and beamsizes
- Monochromators
- Split and Delay Line
- more X-ray optics
- MID Hutches Overview

European XFEL Si(111)

channel cut gap	6.4 mm	
crystal length	70 mm	
required angle stroke	18.75°	
	5 keV	25 keV
Bragg angle θ_B	23.29°	4.54°
beam offset $o(E)$	11.76 mm	12.76 mm

25

IID	Beam	Parameters	and O	otics
	Doam			

European XFEL Si(220)

channel cut gap	7.8 mm		
crystal length	48.3 mm		
required angle stroke	32.80°		
	5 keV	25 keV	
Bragg angle θ_B	40.22°	7.42°	
beam offset $o(E)$	11.88 mm	15.43 mm	

D. Shu (APS) & X. Dong

0

Se to to to

 $\rm 26^{th}$ of January 2015, MID workshop, Hamburg Thomas Roth

- SASE 2 beam parameters
- Focusing with CRLs and beamsizes
- Monochromators
- Split and Delay Line
- more X-ray optics
- MID Hutches Overview

XFEL Split and Delay Line (SDL)

X-ray pump X-ray prope experiments, XPCS and other fast scattering experiments with $\Delta t < 800$ ps require an X-ray split and delay line (SDL)

Needed detour to achieve 800 ps delay in the upper branch:

XFEL Upper branch, Si(220)

XFEL SDL mechanics tolerances

1 μ m takes 3.3 fs \rightarrow 0.5 - 1 μ m translational stability

35

XFEL Intensity splitting of an X-ray beam

different beams at a Bragg beam splitter

Bartels, *J. Vac. Sci. Technol. B*, **1** (1983) p. 338 Bartels et al., *Acta Cryst. A*, **42** (1986) p. 539

XFEL Beam splitter fabrication

Optics Express 21 (2013) p.2823

A Bragg beam splitter for hard x-ray free-electron lasers

Taito Osaka,^{1,*} Makina Yabashi,² Yasuhisa Sano,¹ Kensuke Tono,³ Yuichi Inubushi,² Takahiro Sato,² Satoshi Matsuyama,¹ Tetsuya Ishikawa,² and Kazuto Yamauchi¹

¹Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1Yamada-oka, Suita, Osaka 565-0871, Japan ²RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan ³Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan ⁵osaka(@up.prec.eng.osaka-u.ac.jp)

- SASE 2 beam parameters
- Focusing with CRLs and beamsizes
- Monochromators
- Split and Delay Line
- more X-ray optics
- MID Hutches Overview

European

XFEL more MID beamline instrumentation

European

L more MID beamline overview

European

_ MID beamline overview

more X-ray diagnostics

- SASE 2 beam parameters
- Focusing with CRLs and beamsizes
- Wonochromators
- Split and Delay Line
- more X-ray optics
- MID Hutches Overview

EH mirror operation: liquid surfaces

XFEL EH mirror

- 1 chamber, 1 m long
- 2 mirrors:
 - 1 facing up, 1 facing down
- 500 mm substrate length
- B₄C and one higher-Z coating (Ni?)

(B₄C coating is already sufficient to reach the critical angle of mercury at sample)

muy mupich mupil mupil mdpitch mdy mirrorx

0.25 µrad slope error

cooling option at a later stage

26th of January 2015, MID workshop, Hamburg Thomas Roth

diagnostic endstand:

single shot spectrometer (bent crystals and Gotthard detector) beam position monitor intensity measurement and beamdump

and beamdump V. Lyamayev

XFEL Summary

- 5-25 keV
- pink, Si(111), Si(220)
- 220 ns spacing, or 0-800 ps (SDL)
- 2-1000 µm spot size at sample
- straight and down-deflected (liquids) beams
- up to ~ 1. 10^{13} photons/pulse
- **bandwidth** $\frac{\Delta E}{E}$ ~ 1. 10⁻⁴ in self-seeding (expected)
- ~ 2 107 fs pulses
- attenuators, slits, diagnostic

Thank you.

Acknowledgements:

- A. Madsen, J. Hallmann, G. Ansaldi, W. Lu, B. Kist (European XFEL, MID)
- X. Dong, D. La Civita, V. Lyamayev, I. Agapov, G. Geloni, L.Batchelor,
- J. Grünert, A. Koch, H. Sinn (European XFEL)
- T. Noll (TU Berlin) **1**
- V. Kocharyan, E. Saldin, E. Schneidmiller, M. Yurkov (DESY)